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Abstract

In this experiment, we consider the Z0 boson and its decay channels e−e+, µ−µ+,

τ−τ+ and qq̄. We use data from the OPAL detector in the e−e+ collider LEP at

CERN in order to find different properties of the Z0 boson. To do so, we will also

use Monte Carlo generated data samples. These allow us to find criteria to distin-

guish between the possible final state events, either by a graphical analysis of the

detectors response, or by a statistical analysis relying on a set of variables such as

the deposited energy in the calorimeters.

The experiment is carried out on two days and divided into two parts. While in

the first part, we analyze the events graphically and find out how to distinguish the

tracks of different decay channels, the second part focuses on a statistical analysis

of a huge OPAL data set. To this end, we need to find cuts on a tuple of variables

using Monte Carlo generated samples, making the ascription to the channels pos-

sible without a graphical analysis but rather with an algorithm.

Among other things, we will obtain the Weinberg angle, the mass and decay width

of the Z0 boson and also check lepton universality as well as determine the number

of light neutrino generations from and with the huge OPAL data set.



Chapter 1. Theory

1 Theory

If not mentioned explicitly, the theory is based on the references [1] and [2].

1.1 Elementary Particles and the Standard Model

As far as we understand nowadays, most of the physics in our universe can be de-

scribed with the help of a few elementary particles, collected in the so-called standard

model, whose content is depicted in figure 1.1. Note here, that the gravitation is

not taken into account because it is weak compared to the other forces. One easily

verifies, that these elementary particles can be separated into fermions with spin 1
2

and bosons with spin 1. The fermionic part is made up out of quarks and leptons –

also referred to as the matter content – whereas the bosonic part is made up out of

the vector bosons, mediating the electromagnetic-, weak-, and strong force between

the particles and the higgs boson. As indicated in the figure, there exists an anti-

particle for each particle, having the same mass but carrying the opposite charge.

The whole theory is consistent only as a field theory of quanta, i.e. a quantum field

theory.

Interactions in quantum field theories often rely on the principle of local gauge

invariance. One promotes a global gauge symmetry of the Lagrangian to a local

one and demands invariance, which in turn gives rise to the need of introducing

gauge bosons. The gauge bosons couple to matter in (non-&)abelian-gauge theories

and additionally to other gauge bosons in non-abelian gauge theories. Abelian and

non-abelian refers to the underlying symmetry group and its generators here.

For the standard model, one chooses the most convenient and successful choice

of an electroweak unifying theory, SU(3)C × SU(2)L × U(1)Y, where ‘C’ refers to

color, ‘L’ to left-handed, ‘Y’ to the hypercharge. The first group then implies the

existence of eight gluons and a coupling to particles carrying color, while the second

group implies the existence of three gauge bosons (W+,W 0,W−) and a coupling to

particles carrying weak charge. The third group gives rise to one gauge boson B
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Figure 1.1.: The matter and gauge content of the Standard Model. (Code created
in TikZ by Carsten Burgard, taken from [3], slightly edited for our
purpose).

that couples via the hypercharge Y = Q−I3, where Q is the charge and I3 the third

component of the weak isospin. The particles are here assumed to be written down

as doublets or singlets under SU(2)L, e.g.νe
e−


L

,

u
d


L

or

e−R, uR, dR

respectively for the first generation. The color-indices are suppressed, as obviously,

the quarks would consist of three different color-states. Note here, that right-handed

neutrinos do not exist in the standard model and ‘have to be’ included via an

extension as so-called physics beyond the standard model.

For reasons of consistency to experiments, the physical photon and Z0 have to

be a superposition of B and W 0 respectively, defining the Weinberg angle θ as the

mixing angle for these. The gluons, as well as the W+ and W− are consistent with

the physical observed bosons. Furthermore, the SU(3)C × SU(2)L × U(1)Y gauge
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group introduces three different couplings into the theory, which, after performing

the change of basis indicated above, represent the electric charge e as the coupling

constant of QED, the weak coupling and the strong coupling. With the help of the

formalism of quantum field theory, one can show that the coupling of QED increases

(decreases) with increasing (decreasing) momenta, while the strong coupling con-

stant increases (decreases) with decreasing (increasing) momenta. This leads to the

phenomenon of asymptotic freedom, stating that quarks behave like free particles

for large probed energies, while they only appear in colorless bound states, being

referred to as confinement. These color-neutral hadrons can form so-called jets when

they are emitted as bundles in scatter or decay processes.

Up to this point, the gauge bosons are massless. A mass term for these would

violate the gauge symmetry and is thus forbidden. Instead, one generates masses

via the higgs mechanism. The group SU(2)L × U(1)Y is spontaneously broken to

U(1)em with the help of a complex higgs doublet (h+, h0) that acquires its vacuum

expectation value, e.g. (0, v). Note here that the four degrees of freedom from the

initial higgs doublet are reduced to one and those three missing degrees of freedom

are absorbed by three of the former massless gauge bosons – massive particles have

an additional longitudinal polarization in contrast to massless ones. Consistent with

Goldstones theorem, we get one massless gauge boson which we identify with the

photon and three massive, the (W+,W−) and Z0.

Masses for fermions can be introduced via Yukawa couplings, which couple the

higgs doublet to the fermions and give rise to mass terms after having the higgs

doublet acquire its vacuum expectation value.

This is of course only a short summary and presumes that the reader has some

basic knowledge of those concepts. For more details, we can recommend the sum-

mary in [4, p. 161 et sqq.] on which this recap is partly based on. For a deeper

understanding of quantum field theory, we refer to [5].

1.2 e−e+ Interactions near MZ

In electron-positron interactions at LEP, electrons and positrons are accelerated and

brought to collision. For this process, the following interactions can be observed:

• scattering of e−e+ producing a fermion-antifermion pair, see figure 1.2.

• elastic scattering of e−e+ via s- and t-channel by photon or Z0 exchange, see

figure 1.3.
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Chapter 1. Theory

• annihilation of e−e+ into two or more real photons, see figure 1.4

• production of virtual photons or Z0 bosons, one from e−, the other from e+,

which then interact and produce fermion-antifermion pairs, e.g. hadrons.

If the experiment is carried out close to the Z0 mass, the final state can not contain

top-quarks because of their large mass.

f

f̄e−

e+

γ/Z0

Figure 1.2.: Inelastic e−e+ scattering.

e−

e+e−

e+ e+ e+

e− e−

Figure 1.3.: Elastic e−e+ scattering. Left: s-channel. Right: t-channel.

e+

γ

e−

γ

e+

γ

e−

γ

γ

Figure 1.4.: Annihilation of e−e+ into real photons.

The standard model predicts the cross section of e−e+-annihilation with the fi-

nal states mainly being lepton-antilepton- or quark-antiquark-pairs. Quarks (and
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gluons) never appear as free states though and as a consequence have to hadronize,

i.e. form colorless hadrons. Here, close to the Z0 resonance, the cross section of

e−e+ → ff̄ is dominated by the Z0 part. Using the partial width of the Z0 boson

into the fermions f :

Γf =

√
2N f

C

12π
GFM

3
Z

(
(gfV )2 + (gfA)2

)
(1.1)

where

GF = 1.1663× 10−5 GeV−2, gfV = If3 − 2Qf sin2 θW,

MZ = 91.18 GeV, gfA = If3 , (1.2)

sin2 θW = 0.2312

with If3 the third component of the weak isospin and Qf the charge in units of the

elementary charge e, the cross section close to the peak can be written as

σpeak
f =

12π

M2
Z

ΓeΓf
Γ2
Z

. (1.3)

The differential cross section of e−e+ → ff̄ in lowest order pertubation theory –

now including the Z0 and photon as intermediate states – is given by:

dσf
dΩ

=
α2N f

c

4s

(
F1(s)(1 + cos2(θ)) + 2F2(s) cos(θ)

)
(1.4)

where

F1(s) = Q2
f − 2vevfQf<(χ(s)) + (v2

e + a2
e)(v

2
f + a2

f )|χ(s)|2,

F2(s) = −2aeafQf<(χ(s)) + 4veaevfafχ(s)|2,

vf = gfV /(2 sin(θW ) cos(θW ),

af = gfA/(2 sin(θW ) cos(θW )),

χ(s) = s/((s−M2
Z) + i sΓZ/MZ).

For the final state being e−e+, there is a t-channel in addition to the s-channel. The

behavior of the s-channel is dσs/dΩ ∝ (1 + cos2 θ), while the t-channel behaves like

dσt/dΩ ∝ (1− cos θ)−2.

The cross section in eq. (1.4) exhibits an asymmetry in forward-backward direc-
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tion. This behavior is quantified in the forward-backward asymmetry AFB:

AFB =

1∫
0

dσ
d cos(θ)

d cos(θ)−
0∫
−1

dσ
d cos(θ)

d cos(θ)

1∫
−1

dσ
d cos(θ)

d cos(θ)

=
3

4

F2

F1

. (1.5)

For leptons, this can be approximated at s = M2
Z by

Al,peak
FB ≈ 3

(
vl
al

)2

= 3(1− 4 sin2 θW )2. (1.6)

In order to make precise predictions in high energy experiments radiative correc-

tions have to be taken into account. These correspond to higher order Feynman

diagrams. One distinguishes between real and virtual corrections. In real correc-

tions a photon or a gluon is emmited in the initial or final state, whereas virtual

corrections contain loops inside the diagram. Figure 1.5 shows some examples.

These corrections modify the shape of the cross section slightly. E.g. inital state

radiation leads to a reduced centre-of-mass energy, moving the peak in the resonance

curve.

f

f̄e−

e+

γ

f

f̄e−

e+

f

f̄e−

e+

Figure 1.5.: Radiative corrections to (inelastic) e−e+ scattering. The upper left dia-
gram shows bremsstrahlung in the final states. The other two diagrams
show virtual corrections.
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1.3 Luminosity

Having obtained the experimentally observed event rates for a process, one is in-

terested in calculating the cross section σ. This can be done with the help of the

so-called luminosity L, which in turn can be obtained by simultaneously measur-

ing the rate of another process with known cross section. In e−e+ storage ring

experiments, this is done by bhabha scattering. For the event rate dn/dt, we then

have
dn

dt
= σ · L,

or equivalently

n = σ

∫
L dt (1.7)

with the integrated luminosity L =
∫
L dt.

1.4 The OPAL Experiment

1.4.1 Detector Components

Modern detector systems usually use combinations of drift chambers, to monitor the

track and to measure the momentum of charged particles and calorimeters, meas-

uring the energy of charged and neutral particles.

The functionality of drift chambers is based on proportional counters, which are

gas-filled volumes with positively charged wires aligned in it. An electron liberated

by ionization of an incoming charged particle will drift towards this wire. Due to the

gain of energy in the electric field, an avalanche of electrons and ions will be created,

leading to a signal on the wire. Using multi wire proportional counters and assuming

a constant drift time, the trajectory of charged particles can be reconstructed by

measuring the time difference between entry of the particle and response of the

specific wire.

The jet chamber is a special type of a drift chamber, having a good spatial resolu-

tion and thus being able to resolve double trajectories, making it a useful detector for

hadronic events. There are more types of drift chambers, such as the time projection

chamber, all having special functions and differing (slightly) in their components.

Going into more detail here would go way beyond the scope of this report.
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Chapter 1. Theory

In calorimeters, incoming particles deposit their energy via electromagnetic and

strong interactions, leading to particle showers and producing a proportional signal.

They are often constructed in layers of dense absorbers and active detection devices

such as scintillators.

Electrons passing matter create a shower by the combined effects of bremsstrahlung

and pair production. Reaching a critical energy where the energy loss of brems-

strahlung is equal to ionization, the shower stops. The radiation length X0 is an

important characteristic of these showers. It describes the mean distance after which

the particle content of the shower doubles.

Incoming hadrons produce showers by inelastic nucleon collisions until the shower

hadrons are absorbed or completely slowed down. Due to the large masses, brems-

strahlung does not play an important role here. Part of the energy will be shared

among neutrinos and the creation of muon pairs, which do not interact/are not

absorbed and thus is lost for ionization. The length of such a hadronic shower is

characterized by the nuclear absorption length λ0.

1.4.2 The OPAL-Detector

The schematic structure of the OPAL-detector is shown in figure 1.6. In the follow-

ing, the layers are described from inner, surrounding the collision point, to outer-

most.

The microvertex detector is a silicon detector designed to give information on the

primary interactions. It is surrounded by the vertex chamber, a multiwire propor-

tional counter used for tracking of the created particles, followed by the jet cham-

ber, which simultaneously measures the energy loss. The z-resolution (see figure) is

improved by the Z-chambers. This tank is enclosed by a solenoid followed by the

time-of-flight system, triggering the detector and measuring the particles flight time.

The construction is completed by the calorimeters. The electromagnetic calorimeter

(ECAL) consists of lead glass blocks covering 98% of the solid angle, its endcaps

contain a forward detector – FCAL – which is used to measure Bhabha scatter-

ing. The hadronic calorimeter (HCAL) has a sandwich construction of lead and

detector material. Since muons pass through the ECAL and HCAL without much

interaction, a so-called muon chamber detects produced muons.

1.4.3 Event Identification

The elements of the OPAL detector allow to distinguish between the different final

states of the collision.

12



Chapter 1. Theory

Figure 1.6.: Structure of the OPAL-detector, taken from [2].

An e−e+ event can be identified by two collinear tracks, which completely deposit

their energy in the ECAL. In contrast, muons are detected in the muon chamber,

as they almost lose no energy in the calorimeters. The tauon is short lived, so

only the decay products can be observed. Typical for the tauon are one or three

charged tracks. The leptonic events all have in common that they show a small

multiplicity compared to qq̄ events. Here, the quarks hadronize. The number of

charged tracks and the energy deposited in the calorimeters is much greater than

for leptonic events. The showers induced by these hadron jets, in contrast to the

electromagnetic, start later and extend into the HCAL. With 88 %, the qq̄ final state

dominates the observed events. Neutrino events cannot be measured.

Figure 1.7 schematically shows the signature of different particles in the different

layers of the detector. In the experiment, cuts in the number of tracks and the

energies measured in the ECAL and HCAL will be used to identify the events. This

and also the difference between the detector signals for different events shall become

13
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much clearer later, during the analysis in this report.
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Figure 1.7.: Characteristic traces of particles at the OPAL detector. Solid lines
depict the track of charged particles, dashed lines untrackable neutral
particles. Bubbles represent the showers. (Reconstruction of [2])
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1.5 Preliminary Tasks

P.1: Calculate the decay width Γf for the decays Z0 → e−e+, µ−µ+, τ−τ+ and had-

rons and compare your result with the values from [2].

If3 Qf/e Γf/MeV Γf,lit/MeV, [2, p.9]

e, µ, τ −1
2

−1 83.4 83.8

νe, νµ, ντ
1
2

0 165.8 167.6

u, c 1
2

2
3

285.3 299.0

d, s, b −1
2

−1
3

367.8 378.0

Table 1.1.: The values of If3 and Qf for the different families of leptons and quarks,
as well as the calculated and literature decay widths. Note here, that we
neglected the top-quark due to its large mass.

Using eq. (1.1) and eqs. (1.2), as well as the values for If3 and Qf in table 1.1,

we find the corresponding decay widths. Here, N f
C = 3 for quarks and N f

C = 1 for

leptons has been used.

P.2: Calculate the total Z0 decay width, the hadronic decay width, the ‘charged’

leptonic decay width, the ‘neutral’ (invisible) lepton decay width and the partial cross

sections at the maximum of the resonance.

In order to determine the total Z0 decay width, we calculate and then add up

all the other contributions to the Z0 decay width. To start with the hadronic

decay width, we note that we have to add up the u−, c− and d−, s−, b−quark

contributions. Because of the large mass of the top-quark, it is neglected here. We

then find

Γhadronic = 1674.08 MeV.

For the decay width of the charged leptons, we proceed analogously, adding up the

contributions from e, µ and τ , yielding

Γch. leptons = 250.2 MeV.

For the neutral leptons, one finds

Γneutr. leptons = 497.52 MeV.

Neutrinos are ‘invisible’ for the detector, as they interact only weakly.
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In total, we then find

ΓZ0 = Γhadronic + Γch. leptons + Γneutr. leptons = 2421.80 MeV.

For the partial cross sections at the maximum of the resonance, we make use

of eq. (1.3). Here, we note that
[
σpeak
f

]
= 1/GeV 2(= m2) such that with ~c =

0.197 GeV · fm and 1 b = 100 fm2 we have the corresponding conversion factors and

find table 1.2. The left table gives the cross section for one separate particle, while

the right table is the sum of the different species analogous to the previous task.

σpeak
f /nb

charged lepton 2.09

neutral lepton 4.15

u-like quark 7.14

d-like quark 9.20

σpeak
Σf /nb

charged leptons 6.26

neutral leptons 12.45

hadrons 41.89

total 60.59

Table 1.2.: The (partial) cross sections near the maximum of the resonance for indi-
vidual leptons/quarks (left) and for the sum of different species (right).

P.3: Imagine that the decay into an additional pair of light fermions (u, d, e, ν)

is possible. What would be the change (in percent) of the width of the Z0 resonance

curve?

If the decay into an additional pair of light fermions was possible, the change (in

%) of the width of the Z0 resonance curve can be calculated via

C =
Γadd

ΓZ
,

where ΓZ is the original Z0 decay width and Γadd the additional decay width taken

from table 1.1. The resulting changes as well as the total change upon adding one

of each are given in table 1.3.

P.4: Draw the expected angular distribution for the processes e−e+ → e−e+ and

e−e+ → µ−µ+ . In the case of e−e+ → e−e+ also plot the different contributions.

The cross section for the reaction e−e+ → µ−µ+ is given by eq. (1.4). A plot

can be found in figure 1.8. For the reaction e−e+ → e−e+, also the t-channel has to

be included. The complicated cross section can be found in appendix A. Figure 1.9

shows its angular dependence and the different contributions.
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C in %

u 11.8

d 15.2

e 3.4

ν 6.9

total 37.3

Table 1.3.: The change in the decay width upon adding an additional pair of light
fermions (u, d, e, ν) and the total change on adding all of them.
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Figure 1.8.: Differential cross section for e−e+ → µ−µ+.
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Figure 1.9.: Differential cross section for e−e+ → e−e+. Left: Total cross section.
Right: Contributions from different channels and the interference term.

P.5: Calculate the forward-backward asymmetry in the process e−e+ → µ−µ+

at
√
s = 91.225 GeV, 89.225 GeV and 93.225 GeV with the following values of

sin2(θW ) : 0.21, 0.23 and 0.25.

Using the values for MZ and ΓZ from [6] and equation (1.5), the resulting forward-

backward asymmetries are shown in table 1.4
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√
s/GeV

sin2(θW )

0.21 0.23 0.25

89.225 −0.094 −0.164 −0.195

91.225 0.076 0.022 0.004

93.225 0.231 0.196 0.190

Table 1.4.: Forward-backward asymmetry for different energies and Weinberg angles.
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2 Experimental Analysis

2.1 Analysis of event displays

In the first part of this experiment, we will learn how to distinguish between the

different decay modes of the Z0 boson on the basis of a graphical analysis of events.

To do so, we get four Monte Carlo generated test samples, containing 20 events of

only one decay mode of the Z0 each and four mixed samples, each containing 20

events recorded with the OPAL detector. To analyze the data samples, we will use

the program GROPE, which displays the events in a 2D-overview of the detector.

These can be characterized by the four quantities

• NCharged : The number of charged tracks measured in the detector,

• SumP : The sum of all the charged tracks momenta,

• Energy ECAL: The total energy deposited in the electromagnetic calorimeter,

• Energy HCAL: The total energy deposited in the hadronic calorimeter,

which are also part of the output.

2.1.1 Monte Carlo generated samples

We start with the four prepared data samples (’runs’) of e−e+, µ−µ+, τ−τ+ and qq̄,

each containing 20 events of the respective Z0 decay channel only. These have been

generated with the help of Monte Carlo simulations and make it possible to find

criteria for ascribing specific events on the display to the different decay channels.

The different samples can be run by using the command ’grope x’, where x ∈ {ee,

mm, tt, qq} is self-explanatory. The detectors responses, depicted with GROPE on

the display, are shown in figure 2.1.

Writing down the values of the variables mentioned above for all samples and

creating histograms for the frequencies of the values in each sample separately, we

find the figures 2.2-2.5.
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 Run : even t   2566 : 163733  Da t e  911027  T ime  161301                                  
 Ebeam  45 . 61  Ev i s   51 . 0  Emi ss   40 . 2  V t x  (   - 0 . 10 ,    0 . 11 ,    0 . 50 )               
 Bz=0 . 001  Bunch l e t  1 / 1   Th r us t =0 . 9963  Ap l an=0 . 0000  Ob l a t =0 . 0557  Sphe r =0 . 0044     

C t r k (N=   2  Sump=  50 . 9 )  Eca l (N=   7  SumE=  82 . 6 )  Hca l (N=  0  SumE=   0 . 0 )  
Muon (N=   0 )  Sec  V t x (N=  0 )  Fde t (N=  0  SumE=   0 . 0 )  

S t a t us
De t  T r

CV  3  3
CJ  3  3
CZ  3  0
TB  2  3
PB  1  0
EB  3  3
PE  2  3
EE  3  3
HT  3  1
HS  3  3
HP  3  1
MB  3  3
ME  3  3
FD 3  0
S I  3  0
SW 0  0

Y

XZ

   200 .  cm.   

 Cen t r e  o f  sc r een  i s  (    0 . 0000 ,    0 . 0000 ,    0 . 0000 )         

50  GeV2010 5

 Run : even t   2568 :  80617  Da t e  911028  T ime  125211                                  
 Ebeam  46 . 48  Ev i s   97 . 4  Emi ss   - 4 . 4  V t x  (   - 0 . 08 ,    0 . 11 ,    0 . 61 )               
 Bz=4 . 030  Bunch l e t  1 / 1   Th r us t =0 . 9977  Ap l an=0 . 0000  Ob l a t =0 . 0054  Sphe r =0 . 0001     

C t r k (N=   2  Sump=  90 . 1 )  Eca l (N=   3  SumE=   1 . 6 )  Hca l (N=  4  SumE=   7 . 0 )  
Muon (N=   2 )  Sec  V t x (N=  0 )  Fde t (N=  0  SumE=   0 . 0 )  

S t a t us
De t  T r

CV  3  3
CJ  3  3
CZ  3  0
TB  3  3
PB  2  0
EB  3  3
PE  2  3
EE  3  3
HT  3  1
HS  3  3
HP  3  1
MB  3  3
ME  3  3
FD 1  1
S I  3  0
SW 0  0

Y

XZ

   200 .  cm.   

 Cen t r e  o f  sc r een  i s  (    0 . 0000 ,    0 . 0000 ,    0 . 0000 )         

50  GeV2010 5

 Run : even t   2566 : 208314  Da t e  911027  T ime  215220                                  
 Ebeam  45 . 61  Ev i s   42 . 1  Emi ss   49 . 1  V t x  (   - 0 . 72 ,   - 0 . 10 ,    0 . 75 )               
 Bz=0 . 001  Bunch l e t  1 / 1   Th r us t =0 . 9982  Ap l an=0 . 0005  Ob l a t =0 . 0034  Sphe r =0 . 0014     

C t r k (N=   4  Sump=  36 . 0 )  Eca l (N=   6  SumE=  16 . 1 )  Hca l (N=  7  SumE=   5 . 7 )  
Muon (N=   1 )  Sec  V t x (N=  0 )  Fde t (N=  0  SumE=   0 . 0 )  

S t a t us
De t  T r

CV  3  3
CJ  3  3
CZ  3  0
TB  3  3
PB  1  0
EB  3  3
PE  2  3
EE  3  3
HT  3  1
HS  3  3
HP  3  1
MB  3  3
ME  3  3
FD 3  0
S I  3  0
SW 0  0

Y

XZ

   200 .  cm.   

 Cen t r e  o f  sc r een  i s  (    0 . 0000 ,    0 . 0000 ,    0 . 0000 )         

50  GeV2010 5

 Run : even t   2568 :  79517  Da t e  911028  T ime  124517                                  
 Ebeam  46 . 48  Ev i s  100 . 2  Emi ss   - 7 . 3  V t x  (   - 0 . 07 ,    0 . 12 ,    1 . 24 )               
 Bz=4 . 350  Bunch l e t  1 / 1   Th r us t =0 . 9807  Ap l an=0 . 0046  Ob l a t =0 . 0562  Sphe r =0 . 0307     

C t r k (N=  26  Sump=  62 . 2 )  Eca l (N=  33  SumE=  67 . 2 )  Hca l (N=  9  SumE=  20 . 4 )  
Muon (N=   0 )  Sec  V t x (N=  3 )  Fde t (N=  0  SumE=   0 . 0 )  

S t a t us
De t  T r

CV  3  3
CJ  3  3
CZ  3  0
TB  3  3
PB  2  0
EB  3  3
PE  2  3
EE  3  3
HT  3  1
HS  3  3
HP  3  1
MB  3  3
ME  3  3
FD 1  1
S I  3  0
SW 0  0

Y

XZ

   200 .  cm.   

 Cen t r e  o f  sc r een  i s  (    0 . 0000 ,    0 . 0000 ,    0 . 0000 )         

50  GeV2010 5

Figure 2.1.: The detectors response for a specific e−e+-, µ−µ+-, τ−τ+- and qq̄-event
(from top-left to bottom-right) as displayed by GROPE. The particles
tracks in the inner are displayed in teal, the reaction of the electromag-
netic and hadronic calorimeters in yellow and purple respectively and
the reaction of the muon chamber in red.

With the help of the histograms, it is now an easy job to find cuts for an optimal

separation of the different Z0 decay modes. We find table 2.1, containing lower
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Figure 2.2.: The histograms showing the frequencies of the variable ’NCharged’ for
the different samples e−e+, µ−µ+, τ−τ+ and qq̄.
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Figure 2.3.: The histograms showing the frequencies of the variable ’SumP’ for the
different samples e−e+, µ−µ+, τ−τ+ and qq̄.
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Figure 2.4.: The histograms showing the frequencies of the variable ’SumE’ for the
different samples e−e+, µ−µ+, τ−τ+ and qq̄.
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Figure 2.5.: The histograms showing the frequencies of the variable ’SumH’ for the
different samples e−e+, µ−µ+, τ−τ+ and qq̄.
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and upper bounds for the different variables and decay channels. An appearing ’–’

means that there is no cut to be applied.

N Charged Sum P Energy ECAL Energy HCAL

min max min max min max min max

e−e+ − 4 70 100 85 95 − 1

µ−µ+ − 4 80 105 − 5 − 12

τ−τ+ − 8 − 60 − 40 − 22

qq̄ 8 − − 80 40 85 5 30

Table 2.1.: The cuts read off from the histograms, ’min’ and ’max’ refer to the lower
and upper bound respectively and ’–’ depicts no restriction. Given the
values of the variables and applying these cuts, one can identify a specific
event with a certain decay channel.

In order to make the next part of the experiment more transparent, we create a

decision tree with whose help one can uniquely ascribe an event to a decay channel.

The decision tree, which makes use of table 2.1, is depicted in figure 2.6.

N Charged

qq̄
≥ 8

Energy

ECAL

e−e+
≥ 85

SumP

τ−τ+
≤ 60

µ−µ+

> 60

< 85

< 8

Figure 2.6.: The decision tree in order to ascribe a decay channel to an event, created
using table 2.1. When in doubt, one can go back to table 2.1. (Created
in TikZ).

2.1.2 Mixed Sample

Having learnt how to distinguish between the different decay modes, we want to use

the cuts from the previous part in order to ascribe one of the four decay channels

to the events of a mixed sample. Our group was assigned the sample ’test1’, which

can be run from the console with ’grope test1’ and contains 20 ’real’ OPAL events.

23



Chapter 2. Experimental Analysis

Writing down the values of the four variables, making use of the decision tree in

figure 2.6 and also a determination per graphical estimate, we obtain table 2.2.

Event N Ch. Sum P ECAL HCAL Dec. (tree) Dec. (gr.)

1080 19 39.5 44.3 15.6 qq̄ qq̄

2387 36 42.8 57.1 12.5 qq̄ qq̄

5386 2 95.7 93.4 0.0 e−e+ e−e+

6057 2 90.8 1.4 4.1 µ−µ+ µ−µ+

6696 4 36.5 35.8 10.8 τ−τ+ τ−τ+

7137 2 97.0 2.2 8.9 µ−µ+ µ−µ+

7219 68 42.9 48.5 6.2 qq̄ qq̄

8323 5 35.0 40.8 3.3 τ−τ+ τ−τ+

8641 21 75.8 45.8 21.0 qq̄ qq̄

9149 2 95.2 1.3 7.9 µ−µ+ µ−µ+

9289 2 22.7 43.4 0 τ−τ+ e−e+

9593 4 44.3 37.8 2.6 τ−τ+ τ−τ+

9880 21 53.1 36.2 22.9 qq̄ qq̄

10900 2 89.5 92.0 0.0 e−e+ e−e+

11844 2 89.1 89.7 0.0 e−e+ e−e+

13556 2 4.1 4.4 0.0 τ−τ+ τ−τ+

14063 2 87.8 1.4 4.3 µ−µ+ µ−µ+

14640 2 75.3 90.0 0 e−e+ e−e+

14744 2 93.7 1.6 6.8 µ−µ+ µ−µ+

15755 2 67.1 93.6 0.0 e−e+ e−e+

Table 2.2.: Result of the channel assignment for the different events in the sample
’test1’, making use of the decision tree and a graphical estimate.
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2.2 Statistical Analysis of Z0 decays

In order to measure the mass and decay width of the Z0, as well as the number

of generations of light neutrinos and the Weinberg angle in the second part of this

experiment, we need a large number of events as a reference. This makes a graphical

analysis inconvenient, such that we will analyze the events on a statistical basis

only now. This will be done with the program PAW, where additionally to the

variables NCharged, PCharged (former SumP), E ECal and E HCal for each event,

we now have the total beam energy
√
s/2 denoted by E LEP, the angle cos θ between

incoming e+ and outgoing f̄ , and the angle cosα between the beam and thrust axis.

These are all stored in an array-like structure called ntuple.

Like in the previous part of the experiment, we have simulated Monte Carlo events

and events recorded with the OPAL detector. Analyzing the Monte Carlo generated

events first, we optimize our cuts from the first part of the experiment and have to

find a cut which separates the s-channel from the t-channel for the e−e+-sample.

We then use these test samples – remember, each contains simulated events of one

channel only – to find a to be defined efficiency matrix, telling us how many events of

the underlying set have been identified as such after applying the cuts. This way, we

also take care of background effects. With the help of this efficiency matrix, we can

give a good approximation of the ’real’ values, based on the ’ascribed’ ones for the

data samples recorded with the OPAL detector. We calculate the differential cross

section for the leptonic and hadronic channels and determine the forward-backward

asymmetry from the muon final states.

PAW accepts Fortran and C syntax. As an example, one can plot the PCharged

distribution of the electron test sample for the events with more than two charged

tracks by writing

n/plot electrons.pcharged ncharged > 2

in the shell script.

2.2.1 Monte Carlo generated samples and the efficiency matrix

We now redefine our cuts from table 2.1 to the values given in table 2.3, by analyzing

the large amount of events from Monte Carlo generated samples on a statistical basis.

We fix a cut for SumP ∈ [0, 120] for all samples, as particles with zero energy are

unphysical, while the upper bound respects the limited energy of the detector. For

the electron decay channel, we additionally have to separate the s-channel from the

t-channel contribution, because the other decays only exist in the s-channel. As
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the t-channel dominates for small angles, while the s-channel dominates for large

angles, we set a cut on the angle between the initial and final state particles for the

e−e+-sample:

cos θ ∈ [−0.9, 0.5].

If no additional bound (i.e. a ’−’) is given in table 2.3, the general cut on SumP

from above still holds true. The corresponding figures C.1-C.4 can be found in the

appendix.

N Charged Sum P Energy ECAL Energy HCAL

min max min max min max min max

e−e+ − 3 50 − 80 100 − 2

µ−µ+ − 3 75 − − 6 − 15

τ−τ+ − 6 − 60 − 70 − 20

qq̄ 7 − − 80 30 80 2 50

Table 2.3.: The redefined cuts for the large data samples. Otherwise, the table has
the same content as table 2.1.

For later convenience and in order to give meaning to the matrix notation of the

efficiencies, we introduce a vector notation

N =


#e

#µ

#τ

#q

 ,

denoting the numbers of total/ascribed e−e+-, µ−µ+-, τ−τ+- and qq̄-events in the

different samples before/after applying the cuts. Multiplying such a vector to the –

to be defined – matrix, we will be able to get the real number of events depending

on the ascribed ones.

For the total number of events in this notation, we look at the samples with only

a cut applied to the e−e+-sample, separating the s-channel from the t-channel and
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find

Ñtot =


20531

94381

79214

98563

 .

Using the cut to get rid of the t-channel contribution of the cross section for the

e−e+ final states also removes part of the s-channel. Remembering that the s-channel

differential cross section behaves like (1 + cos2 θ) and that we cut cos θ ∈ [−0.9, 0.5],

we can take this into account by multiplying the Ñ1
tot-entry with the correction factor

C =

∫ 1

−1
1 + cos2 θ d cos θ∫ 0.5

−0.9
1 + cos2 θ d cos θ

= 1.5829.

We then arrive at

Ntot =


32499

94381

79214

98563

 , (2.1)

where we rounded to integer numbers because it does not make sense to talk about

non-integer particle numbers.

Additionally, we now introduce said matrix notation, writing the used samples in

different columns and the applied cuts in different rows. The value in the specific

entry (i, j) then denotes the remaining events of the sample j upon applying the

cuts i. For our cuts, this gives

n =



Cuts ↓ \Sample → e µ τ q

e 18254 0 9 0

µ 0 74796 13 0

τ 246 1451 66807 243

q 0 0 526 89618

.

Calculating what part of the underlying set is left after applying the cuts, we divide
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the columns by the corresponding value N j
tot of the vector (2.1), i.e.

εij =
nij

N j
tot

. (2.2)

This results in

ε =


0.56169 0 0.00011 0

0 0.79249 0.00016 0

0.00757 0.01537 0.84337 0.00247

0 0 0.00664 0.90925

 , (2.3)

where we rounded to five decimal places and from now on drop the additional legend

for the rows and columns.

Considering eq. (2.2), one notices that the numerator and denominator on the

right-hand side are correlated because a change in Ntot also results in a change of

n. For the errors on these values, one thus has to assume a binomial distribution.

Following appendix B, we can use eq. (B.1) to calculate this binomial distributed

error. To this end, we calculate
√
εij(1− εij) for each entry of the matrix (2.3) and

divide every column by the square root of the respective entry of the vector (2.1).

In other words, we have

∆εij =

√
εij(1− εij)

N j
tot

and – again rounding to five decimal places – get the matrix

∆ε =


0.00275 0 0.00004 0

0 0.00132 0.00005 0

0.00048 0.00040 0.00129 0.00016

0 0 0.00029 0.00091

 . (2.4)

If we further normalize Ntot of eq. (2.1) to

N̂total =


100000

100000

100000

100000

 ,
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we have to multiply each column of the matrix (2.3) and (2.4) with 100000. As we

will not use this result in the future, this calculation is left to the reader.

What we have obtained now, is a matrix that gives the number of ascribed e−e+-,

µ−µ+-, τ−τ+- and qq̄-events in terms of the underlying set of total events in the

samples, i.e.

Nasc = εNtot.

What we later need, is the inverse of this equation. We will have a number of

registered events after applying the cuts and want the real number of events in the

sample, i.e.

Ntot = ε−1Nasc. (2.5)

We thus invert the matrix (2.3) with Mathematica using the method ’CofactorEx-

pansion. To invert the errors, we make use of eq. (B.2) in appendix B:

∆(ε−1) =
∣∣(ε−1)(∆ε)(ε−1)

∣∣ (2.6)

and eventually find

ε−1 =


178035.00 0.47 −23.99 0.07

0.33 1.26 −24.56 0.07

−1598.00 −2300.28 118575.00 −321.52

11.67 16.80 −865.95 109984.00

× 10−5, (2.7)

as well as

∆(ε−1) =


872.28 0.16 17.90 0.06

0.07 210.04 6.73 0.02

57.80 52.58 181.09 19.79

0.74 1.10 35.44 110.43

× 10−5. (2.8)

Here, we changed to the scientific notation because of the small values that appear

in the inverse matrix.

2.2.2 OPAL data and the total cross section

In this part, we work with a data sample recorded with the OPAL detector. There

are events of the different types, e−e+, µ−µ+, τ−τ+ and qq̄, taken at seven different

centre-of-mass energies in this sample. For each of these energies, we use the cuts
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found in the previous part to determine the events in the hadronic and leptonic

channels. What we find is depicted in table 2.4, where the errors on the entries

follow a poisson distribution and are thus given by the square root of the respective

value – again, rounded to integer values. We were assigned the sample ’data 1’.

√
s/GeV

Cuts

e−e+ µ−µ+ τ−τ+ qq̄

88.47 113± 11 114± 11 156± 12 3153± 56

89.46 172± 13 199± 14 207± 14 4666± 68

90.22 203± 14 291± 17 254± 16 6686± 82

91.22 2074± 46 3287± 57 3373± 58 79943± 283

91.97 304± 17 559± 24 554± 24 13045± 114

92.96 122± 11 227± 15 263± 16 5871± 77

93.71 155± 12 275± 17 277± 17 6491± 81

Table 2.4.: The determined number of events in the hadronic and leptonic channels
after applying the cuts onto the OPAL sample ’data 1’ at the seven
different centre-of-mass energies.

As discussed in section 2.2.1, we have to use eq. (2.5) in order to get the real

number of hadronic and leptonic events as a function of the ascribed events given in

table 2.4. In other words, we have to multiply the rows of table 2.4 with the inverse

efficiency matrix (2.7) to get the real number of events. The error on these values is

simply given by gaussian error propagation, where one has to make use of eq. (2.6)

again. What we find is shown in table 2.5, where – once again – we rounded to

integer numbers.

√
s/GeV N e

real Nµ
real N τ

real N q
real

88.48021 201± 19 144± 13 170± 14 3466± 62

89.47158 306± 23 251± 18 223± 16 5130± 75

90.22720 361± 25 367± 22 270± 18 7351± 90

91.23223 3692± 83 4147± 73 3634± 71 87896± 323

91.97109 541± 31 705± 30 597± 27 14343± 126

92.97091 217± 20 286± 19 286± 19 6455± 84

93.71841 276± 22 347± 21 299± 19 7137± 89

Table 2.5.: The ‘real’ number of events in the hadronic and leptonic channels, i.e.
the values from table 2.4 corrected for the efficiency and subtracted by
the background.

Given the integrated luminosities for the different centre-of-mass energies taken
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from [7] and depicted in table 2.6, we use eq. (1.7) to find the cross sections.

√
s/GeV L dt/nb−1

88.48021 675.8590± 5.721257

89.47158 543.6270± 4.830643

90.22720 419.7760± 3.974844

91.23223 3122.204± 22.31760

91.97109 639.8380± 5.577354

92.97091 479.2400± 4.481870

93.71841 766.8380± 6.497519

Table 2.6.: The integrated luminosities including their errors for the centre-of-mass
energies used in the sample ’data 1’. Taken from [7].

The resulting cross sections have to be corrected with table 2.7, due to radiative

corrections from higher order Feynman diagrams. The result is given in table 2.8.

√
s/GeV hadronic correction/nb leptonic correction/nb

88.47 2.0 0.09

89.46 4.3 0.20

90.22 7.7 0.36

91.22 10.8 0.52

91.97 4.7 0.22

92.96 −0.2 −0.01

93.71 −1.6 −0.08

Table 2.7.: Radiative corrections for the cross sections at seven centre-of-mass ener-
gies in the region of the samples energies. Taken from [2].

2.2.3 The forward-backward Asymmetry

In this part, we want to determine the forward-backward asymmetry from the OPAL

data in order to calculate the Weinberg angle sin2 θ. For this purpose, we investigate

the muon final states and measure the number of muons flying in forward (0◦−180◦)

and backward (180◦ − 360◦) direction respectively. The error on this number is

poisson distributed like in the previous part for table 2.4 and thus given by the

square root of the value. The result is shown in table 2.9.

Having obtained these values, we can define

AFB =
Nf −Nb

Nf +Nb

, (2.9)
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√
s/GeV σe/nb σµ/nb στ/nb σq/nb

88.48021 0.39± 0.03 0.30± 0.02 0.34± 0.02 7.1± 0.1

89.47158 0.76± 0.04 0.66± 0.03 0.61± 0.03 13.7± 0.2

90.22720 1.22± 0.06 1.23± 0.05 1.00± 0.04 25.2± 0.3

91.23223 1.70± 0.03 1.85± 0.03 1.68± 0.02 39.0± 0.2

91.97109 1.07± 0.05 1.32± 0.05 1.15± 0.04 27.1± 0.3

92.97091 0.44± 0.04 0.59± 0.04 0.41± 0.04 13.3± 0.2

93.71841 0.28± 0.03 0.37± 0.03 0.31± 0.02 7.7± 0.1

Table 2.8.: The cross sections for the four different decay channels at the seven given
centre-of-mass energies.

√
s/GeV Nf,cos([0,1]) Nb,cos([−1,0])

88.47 46± 7 68± 8

89.46 102± 10 97± 10

90.22 129± 11 162± 13

91.22 1624± 40 1663± 41

91.97 285± 17 274± 17

92.96 136± 12 91± 10

93.71 154± 12 121± 11

Table 2.9.: The number of muon final states in forward and backward direction in-
cluding their poisson distributed errors for the seven different centre-of-
mass energies.

analogously to eq. (1.5). Here, Nf and Nb denote the number of muons flying in

forward and backward direction respectively. Because of higher order effects, we

have to consider radiative corrections and correct the values with the help of table

2.10. What we then find is depicted in table 2.11, where the error on AFB follows a

binomial distribution, because the numerator and denominator are not independent.

We know that for energies close to the peak, eq. (1.6) holds true. According to

table 2.9, 91.23223 GeV is the closest one to the peak out of the seven centre-of-mass

energies. We can then solve eq. (1.6) to find the Weinberg angle:

sin2 θW ≈
1

4

(
1−

√
Apeak

FB

3

)
= 0.23842± 0.00125.

This value is close to the 5σ confidence level of the literature value from [6], being

sin2 θlit
W = 0.23122± 0.00015.
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√
s/GeV Radiative correction

88.47 0.021512

89.46 0.019262

90.22 0.016713

91.22 0.018293

91.97 0.030286

92.96 0.062196

93.71 0.093850

Table 2.10.: Radiative corrections for AFB for seven different centre-of-mass energies
in the region of the centre-of-mass energies of the six available samples.
Taken from [2].

√
s/GeV AFB

88.48021 −0.1714705± 0.0419767

89.47158 0.0443876± 0.0145997

90.22720 −0.0966891± 0.0190890

91.23223 0.0064281± 0.0013939

91.97109 0.0499640± 0.0092149

92.97091 0.2604339± 0.0291289

93.71841 0.2138500± 0.0247253

Table 2.11.: The forward-backward asymmetry, determined with eq. (2.9) from the
values in table 2.9 and corrected by table 2.10.

A possible reason for our result being so far away from the literature value is of

course that we took the peak to be at an energy of 91.23223 GeV, a fitted curve

could improve this result immensely.

2.2.4 Lepton Universality

From the standard models point of view, the Z0 boson should couple identical to

the three charged leptons and thus the cross section for each final state l−l+ (at the

peak) is expected to be the same. This is referred to as lepton universality in this

context. Using eq. (1.3), which is valid at the peak
√
s = MZ0 , we find with the

literature values from [6] that

σpeak
l = (1.9982± 0.0051) nb. (2.10)

Note the difference to table 1.2, where we used the values from [2].
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Using table 2.8 to extract the cross sections at the centre-of-mass energy closest

to MZ0 being
√
s = 91.23223, we find

σepeak = (1.70± 0.03) nb,

σµpeak = (1.85± 0.03) nb, (2.11)

στpeak = (1.68± 0.02) nb.

While the values for the electron and tauon agree with each other within a 1σ

confidence level, they do not agree with the expected value of eq. (2.10). The value

for the muon is the closest one to eq. (2.10) – even though without lying within a

5σ confidence level – but it does not agree with the other values from eq. (2.11). A

possible cause for the wrong electron value could be the removal of the t-channel and

adding of the partly removed s-channel. Yet, at first sight, the disagreeing values

for the muon and tauon seem inexplicable if we assume that our efficiency matrix

(2.7) is correct.

As an additional test, we now want to calculate the ratios of the hadronic to the

leptonic total cross sections at the peak,

σqpeak

σlpeak

for l = e, µ, τ,

and compare these to the literature value, corresponding to the ratio of the partial

decay widths Γq/Γl. This ratio can be found in [6] and is depicted in table 2.12,

together with the ratios of the hadronic and leptonic cross sections.

e−e+ µ−µ+ τ−τ+ Γq/Γl

σqpeak/σ
l
peak 22.94± 0.42 21.08± 0.36 23.21± 0.30 20.767± 0.025

Table 2.12.: The ratios of the total hadronic to the leptonic cross sections at the
peak and the ratio of the partial decay width Γq to Γl.

Like for the cross sections at the peak in eq. (2.11), the value for the muon agrees

the best, lying within a 1σ confidence level. The value for the electron and tauon do

not agree with this value and the only reasonable argument for this can be that our

efficiency matrix (2.7) is not a good ansatz. The tauon and hadron channel have

a large overlap, such that analyzing table 2.12, we note that some of the tau final

states could have been identified wrongly, particularly as hadron final states.
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2.2.5 Breit-Wigner fit of the cross sections

In this further part, we want to pick up where we left off in section 2.2.2, in order to

obtain more information out of the found cross sections, such as the mass and width

of the Z0 boson. Returning to table 2.8 in section 2.2.2, we now want to plot the

values of the cross sections for the different final states e−e+, µ−µ+, τ−τ+ and qq̄

at the seven given energies. We then fit a Breit-Wigner curve to these values with

help of the program root. The result with the corresponding parameters of the fit is

shown in figures 2.7-2.10.
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Figure 2.7.: The plotted cross section for e−e+ from table 2.8 with the corresponding
fitted Breit-Wigner curve.

Collecting all these parameters in an overview and rounding the values appropri-

ately, we find table 2.13. Determining the mass and decay width of the Z0 boson

out of this parameters is an easy job now. We want to use the weighted mean for

this (see eq. (B.3) and eq. (B.4) in appendix B) and find

MZ0 = (91.15± 0.01) GeV

ΓZ0 = (2.52± 0.02) GeV,

which lie within a 4σ and 2σ confidence level of the literature values from [6] re-
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Figure 2.8.: The plotted cross section for µ−µ+ from table 2.8 with the corresponding
fitted Breit-Wigner curve.
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Figure 2.9.: The plotted cross section for τ−τ+ from table 2.8 with the corresponding
fitted Breit-Wigner curve.
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Figure 2.10.: The plotted cross section for qq̄ from table 2.8 with the corresponding
fitted Breit-Wigner curve.

e−e+ µ−µ+ τ−τ+ qq̄

χ2/ndf 7.999/4 2.225/4 19.85/4 10.29/4

Prob 0.009161 0.6945 0.0005345 0.03584

MZ0/GeV 90.96± 0.03 91.17± 0.03 91.14± 0.03 91.17± 0.01

ΓeΓf/MeV2 6093± 315 6484± 263 5637± 223 141700± 1468

ΓZ0/GeV 2.465± 0.078 2.477± 0.059 2.431± 0.054 2.535± 0.017

Table 2.13.: The parameters of the fitted Breit-Wigner curves to the cross sections
for the Z0 decay into final states e−e+, µ−µ+, τ−τ+ and qq̄.

spectively, being

M lit
Z0 = (91.1876± 0.0021) GeV

Γlit
Z0 = (2.4952± 0.0023) GeV.

To calculate the partial widths Γf for the different channels, we start with Γe,

because this appears as ΓeΓe in the fitted parameters and is thus given by taking

the square root. The remaining partial widths can then be obtained by simply
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dividing Γe out of ΓeΓf . We arrive at

Γe = (78.058± 2.018) MeV

Γµ = (83.128± 3.978) MeV

Γτ = (72.269± 3.407) MeV

Γq = (1816.670± 50.395) MeV

(2.12)

and compare these to the literature values from [6], given by

Γlit
e = (83.91± 0.12) MeV

Γlit
µ = (83.99± 0.18) MeV

Γlit
τ = (84.08± 0.22) MeV

Γlit
q = (1744.4± 2.0) MeV.

The only partial decay width that agrees with the literature value within a 1σ

confidence level is Γµ. For the other partial decay widths, we find that Γe lies within

a 3σ, Γτ within a 4σ and Γq within a 2σ confidence level of the respective literature

value.

Another obtainable feature from the fitted curves to the cross sections is the

number of neutrino generations. To this end, we note that

ΓZ0 = Γe + Γµ + Γτ + Γq + n · Γν ,

which can be solved for n, the number of neutrino generations. Inserting the obtained

partial decay widths from eq. (2.12) and the theoretical prediction for Γν from [2],

we find that

n = 2.786± 0.313.

Within a confidence level of 1σ, this agrees with the known three neutrino genera-

tions of the standard model.
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3 Conclusion

On the first day of the experiment, we developed a procedure in order to assign

events on a statistical basis instead of a graphical analysis. This procedure seemed

to do well on first sight.

The second day was aimed at calculating different properties of the Z0 boson,

the Weinberg angle and the number of light neutrino generations. The Weinberg

angle was determined by measuring the forward-backward asymmetry of the muon

channel at the center-of-mass energy closest to the Z0 mass, yielding sin2 θW =

(0.23842 ± 0.00125) which is out of the 5σ confidence level of the literature value.

The only possible reason for this bad value seems to be our calculated (inverse)

efficiency matrix and consequential wrongly assigned events. Calculating the ratio

of the leptonic cross sections to the hadronic cross section, we investigated lepton

universality and found a more or less unsatisfying result. The total cross sections at

the Z0-peak were all smaller than the expected theoretical value. While the ratio of

the cross sections for the muon is still in the 1σ confidential level of the corresponding

literature value, the others deviate strongly. Again, we find the (inverse) efficiency

matrix as the reason. Especially the tauon cut seems to be chosen badly, as can be

seen from the matrix itself, as well as the applied t-channel cut for the electrons.

Using a Breit-Wigner fitted curve for the cross sections, we found the averaged Z0

mass MZ0 = (91.15 ± 0.01) Gev and decay width ΓZ0 = (2.52 ± 0.02) GeV, which

match with the literature values in a 4σ and 2σ confidence level respectively. Within

a 1σ confidence level – though a high error – we were also able to determine the

number of neutrino generations to be three, by looking at the total decay width of

the Z0 and the partial decay widths into the different leptons, hadrons and ‘invisible’

channels.
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A e−e+→ e−e+ Cross Section

The cross section is given by [8]:

dσ(1)

dΩ
(γ(s), γ(s)) =

α2

4s
(1 + c2)

dσ(2)

dΩ
(Z(s), Z(s)) =

α2

4s
|χ(s)|2((g2

V + g2
A)2(1 + c2) + 8g2

V g
2
Ac)

dσ(3)

dΩ
(γ(s), Z(s)) =

α2

4s
2<(χ(s))(g2

V (1 + c2) + 2g2
Ac)

dσ(4)

dΩ
(γ(t), γ(t)) =

α2

4s

2

(1− c)2
((1 + c2) + 4)

dσ(5)

dΩ
(Z(t), Z(t)) =

α2

4s
2χ′(t)2((g2

V + g2
A)2((1 + c2) + 4) + 4g2

V g
2
A((1 + c2)− 4))

dσ(6)

dΩ
(γ(t), Z(t)) =

α2

4s
4χ′(t)

(
(g2
V + g2

A)
(1 + c)2

(1− c)
+ 4(g2

V − g2
A)

1

(1− c)

)
dσ(7)

dΩ
(γ(s), γ(t)) = −α

2

4s

2(1 + c)2

(1− c)
dσ(8)

dΩ
(Z(s), Z(t)) = −α

2

4s
2<(χ(s))χ′(t)((g2

V + g2
A)2 + 4g2

V g
2
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dσ(10)

dΩ
(γ(s), Z(t)) = −α

2

4s
2χ′(t)(g2

V + g2
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dσ(10)

dΩ
(γ(t), Z(s)) = −α

2

4s
2<(χ(s))(g2

V + g2
A)

(1 + c)2

(1− c)

here c denotes cos(θ) and χ(s) and χ′(t) are given by:

χ(s) =
s

s−M2
Z + i ΓZMZ

, χ′(t) =
1

2

s

M2
Z − t
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B Statistical Methods

In order to determine the error on binomial distributed random variables, we shall

consider an example, following [9, p.21].

Lets assume a particle detector having detected n = 9600 out of N = 11000

particles. Furthermore, this process is assumed to be binomial distributed. The

efficiency is then given by

ε =
n

N
= 87.3 %

The statistical error on the efficiency is then given by

∆ε =

√
ε(1− ε)
N

= 0.3 % (B.1)

Furthermore, we want to follow [10] and give a formula for the error propagation

of an inverse matrix.

To this end, we assume an efficiency matrix given by

εij =
nij
Nj

where nij denotes the number of remaining events of the sample j upon applying

the cuts i and Nj is the total number of events in the sample j. All εij are then

positive definite and less than or equal to one. For the inverse matrix, the errors

can then be determined via

[∆(ε−1)]ij =
∣∣[ε−1]im[∆ε]mn[ε−1]nj

∣∣ (B.2)

Following [11], we want to summarize how to calculate a weighted mean for phys-

ical measurements. Taking N measurements x1, . . . , xN with errors ε1, . . . , εN , the
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weighted mean is defined as

xm =

∑N
i=1wixi∑N
i=1wi

where wi =
1

σ2
i

. (B.3)

The error on this mean is given by

εm =
1√∑N
i=1 wi

. (B.4)

Peculiarly is here, that with the weights defined like this, more precise measurements

count more than less precise measurements.
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Figure C.1.: The histograms showing the variables of the electron sample after ap-
plying the cuts.
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Figure C.2.: The histograms showing the variables of the muon sample after applying
the cuts.
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Figure C.3.: The histograms showing the variables of the tauon sample after apply-
ing the cuts.
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Figure C.4.: The histograms showing the variables of the hadron sample after ap-
plying the cuts.
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