Disclaimer

The solution at hand was written in the course of the respective class at the University of Bonn. If not stated differently on top of the first page or the following website, the solution was prepared and handed in solely by me, Marvin Zanke. Anything in a different color than the ball pen blue is usually a correction that I or a tutor made. For more information and all my material, check: https://www.physics-and-stuff.com/

I raise no claim to correctness and completeness of the given solutions! This equally applies to the corrections mentioned above.

This work by Marvin Zanke is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Group theory Exercise 3

H3.1: \(D_4 = \{ e, c, c^2, c^3, b, bc, bc^2, bc^3 \} \)

(1) \(\langle c, b \mid c^4 = e, b^2 = c, (cb)^2 = e \rangle \) is important!

From Lagrange's theorem, we know that any subgroup of \(D_4 \) has to be of order 1, 2, 4, 8.

- Order 1 subgroups \(H_1 = \{ e \} \)
- Order 2 subgroups \(H_2 = \{ e, c^2 \} \)
- Order 4 subgroups isomorphic to \(\mathbb{Z}_2 \)

 thus generated by any element of order 2: \(c, b, bc, bc^2, bc^3 \)

\(H_2 = \{ e, c^2 \} \), \(H_2 = \{ e, b \} \), \(H_2 = \{ e, bc \} \), \(H_2 = \{ e, bc^2 \} \)

Thus, \(H_2 = \{ e, bc \} \)

- Order 4 subgroups isomorphic to \(\mathbb{Z}_4 \) (cyclic) or to \(\mathbb{Z}_2 \times \mathbb{Z}_2 \), meaning it's generated by an element of order 4 (= c) or by two elements of order 2 \((b, c^2 \) or \(bc, c^2 \)) and thus

\(H_2 = \{ e, c, c^2, c^3 \} \), \(H_2 = \{ e, b, c^2, bc^2 \} \)

Conjugacy classes are given by \([a] = \{ \text{all } g \in G : gag^{-1} = a \} \)

- \([e] = \{ e \} \)

\(g \notin \mathbb{Z}_4 \) where \(g = c^2 \) or \(g = bc^2 \) \(\Rightarrow \) consider 2 cases

- \(c^2 c^{4-n} = c \)

- \(bc^2 c^{4-n} b = bc^2 b = c^2 \)

- \(bc^2 c^{4-n} b = bc^2 b = c^2 \)
9 b c^{-1}
- e^n b c^{4-n} = c^n b = c b^{2n} \implies \{b\} = \{b, bc^2\}

9 b c^{-1}
- c b c^{4-n} = b c c^{-n} = b c^{2n} \implies \{bc\} = \{bc, bc^2\}

2) Invariant SGA means \(g H = Hg \forall g \in G \) (it SGA)

or \(g H g^{-1} \in H \forall g \in G \)

Obviously, Invariant SGA are the union of conjugacy classes

- \(H_e = \{e\} \) by triviality
- \(H_e = D_4 \) by triviality,
- \(H_{e_1} = \{e\} \cup \{c^2\} = \{e, c^2\} \)
- \(H_{e_2} = \{e\} \cup \{c\} \cup \{c^2\} = \{e, c, c^2\} \)
- \(H_{e_3} = \{e\} \cup \{c^2\} \cup \{b\} = \{e, b, c^2, bc^2\} \)
- \(H_{e_4} = \{e\} \cup \{c^2\} \cup \{bc\} = \{e, bc, c^2, bc^2\} \)

Quotient groups defined by \(\{ g H \mid H \text{ w.s. } g \in G \} \)

- \(D_4 / H_1 = \{ e, b, c, c^2, c^3, bc, bc^2, bc^3 \} \)
- \(D_4 / H_2 = \{ H_2 \} = \{ D_4 \} \)
- \(D_4 / H_3 = \{ e, c, c^3, b, bc^2, bc \} \)
- \(D_4 / H_4 = \{ e, bc, c^2, bc^2, c^3, bc \} \)
- \(D_4 / H_5 = \{ e, bc, c^2, bc^2, c^3, bc \} \)
- \(D_4 / H_6 = \{ e, bc, c^2, bc^2 \} \)

(2) SGs of SGA had isomorphic to D4

Correct \(g \mapsto (e, c, c^2, c^3, b, bc, bc^2, bc^3) \) take as the proof of Cayley's theorem

Consider the 2 cases \(g = c^n \) and \(g = bc^n \) objective by rearrange-

you need to find the subgroup explicitly.
\[H3.2 \]

\[\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_i \sigma_j = \delta_{ij} + \frac{3}{2} \epsilon_{ijk} \sigma_k \]

We will construct the group table for all elements generated by products of \(\sigma_1, \sigma_2 \); each new element resulting from a multiplication will be added to the table constructively.

<table>
<thead>
<tr>
<th>(\sigma_1)</th>
<th>(\sigma_2)</th>
<th>(\sigma_1 \sigma_2)</th>
<th>(\sigma_2 \sigma_1)</th>
<th>(-\sigma_2)</th>
<th>(-\sigma_1)</th>
<th>(-\sigma_1 \sigma_2)</th>
<th>(-\sigma_2 \sigma_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_1)</td>
<td>(\sigma_2)</td>
<td>(\sigma_1 \sigma_2)</td>
<td>(\sigma_2 \sigma_1)</td>
<td>(-\sigma_2)</td>
<td>(-\sigma_1)</td>
<td>(-\sigma_1 \sigma_2)</td>
<td>(-\sigma_2 \sigma_1)</td>
</tr>
<tr>
<td>(\sigma_2)</td>
<td>(\sigma_1)</td>
<td>(\sigma_2 \sigma_1)</td>
<td>(\sigma_1 \sigma_2)</td>
<td>(-\sigma_1 \sigma_2)</td>
<td>(-\sigma_2 \sigma_1)</td>
<td>(-\sigma_2)</td>
<td>(-\sigma_1)</td>
</tr>
</tbody>
</table>

- \(\sigma_1^2 = \delta_{11} \quad -\sigma_2^2 = \delta_{22} \)
- \(\sigma_1 \sigma_2 = i \sigma_3
- \sigma_2 \sigma_1 = -i \sigma_3
- \sigma_1^2 - \sigma_2^2 = \sigma_1 \sigma_2 = i \sigma_3
- \sigma_2^2 - \sigma_1^2 = \sigma_2 \sigma_1 = -i \sigma_3
- \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 = \sigma_3
- \sigma_2 \sigma_1 \sigma_2 = \sigma_1 \sigma_2 \sigma_1 = i \sigma_3
- \sigma_1 \sigma_2 \sigma_1 \sigma_2 = \sigma_2 \sigma_1 \sigma_2 \sigma_1 = i \sigma_3
- \sigma_2 \sigma_1 \sigma_2 \sigma_1 = \sigma_1 \sigma_2 \sigma_1 \sigma_2 = -i \sigma_3
- \sigma_1 \sigma_2 \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \sigma_1 \sigma_2 = -i \sigma_3
- \sigma_2 \sigma_1 \sigma_2 \sigma_1 \sigma_2 = \sigma_1 \sigma_2 \sigma_1 \sigma_2 \sigma_1 = i \sigma_3

- Associativity is inherited by matrix multiplication
- Neutral element: \(I \)
- Inverse: See multiplicative inverse, \(\sigma_i^{-1} = \sigma_i \) in each row/column \(I \)

The group \(G \) has the order \(16 \times 1 = 16 \)

For \(X = \sigma_1, \sigma_2, -\sigma_1, -\sigma_2, -I \), we have \(\text{ord}(X) = 2 \)

For \(Y = 3 \sigma_3, -i \sigma_3 \), we have \(\text{ord}(Y) = 4 \)

And \(\text{ord}(\sigma_3 \sigma_1) = 1 \)

We notice that the inverse of any element is either the element itself, or the negative of the element for \(\pm i \sigma_3 \).

Furthermore, one easily finds that two different \(P \times I \), anticommute, while the same yield the unit matrix (see Levi-Civita symbol).

Thus \(G \sigma_1 G^{-1} = -I \) for \(G \in \{ i \sigma_3, -i \sigma_3 \} \) and adjacency classes are disjoint.
We immediately get: \[[A] = \{-1\}, [-A] = -1 \]
and \[[i] = i, [1] = 1 \]
as the negative is in the conjugacy class as well for Pauli-matrices.

The S_3 can again be obtained by looking at \(\{H\} = \{1, 2, 4, 8\} \), respectively, where \(\{H\} = \{1\} \) is generated by an element of order 2 and \(\{H\} = \{1, 2\} \) is either generated by an element of order 4 or 2 elements of order 2.

- \(H_1 = \{1\} \)
- \(H_2 = \{1, -1\} \)
- \(H_3 = \{1, i, -1, -i\} \)
- \(H_4 = \{1, i, -1, 1, i\} \)

The invariant S_3 are: \(H_4 = \{1\} \)

\[H_5 = \{1\} \cup \{A\} \cup \{1, i\} \]
\[H_6 = \{1\} \cup \{A\} \cup \{1, -i\} \]
\[H_7 = \{1\} \cup \{A\} \cup \{i, -1\} \]
\[H_8 = \{1\} \cup \{A\} \cup \{-1, -i\} \]

Now consider the quotient groups \(\{G/H\} \) where \(\{1, H\} = \text{left} \) and \(\text{right} \) gives:

\[G/H_1 = \{ A, -A, i, -i, 1, -1, iA, -iA, i, -i, 1, -1 \} \]
\[G/H_2 = \{ 1, -1 \} \]
\[G/H_3 = \{ A, -A, i, -i, 1, -1, i, -i, 1, -1 \} \]
\[G/H_4 = \{ 1, -1 \} \]
\[G/H_5 = \{ A, -A \} \]
\[G/H_6 = \{ A, -A, i, -i \} \]
\[G/H_7 = \{ A, -A, i, -i \} \]
\[G/H_8 = \{ A, -A \} \]

Construct isomorphism \(\phi : D_4 \to G \) and \(\phi(1) = 1, \phi(c) = i, \phi(c^2) = 1, \phi(c^3) = 1 \).

We have \(\text{ord}(c), \text{ord}(bc), \text{ord}(bc^2), \text{ord}(bc^3), \text{ord}(bc^4) \).

\[\phi(c^4) = A, \phi(c^5) = -1 \]
\[\phi(c^6) = -i, \phi(c^7) = i, \phi(c^8) = 1 \]
Why not possible like this?

\[H_3.2 \quad \sigma_1 = (0 1), \quad \sigma_2 = (1 0) \quad \sigma_i \sigma_j = \delta_{ij} + \sum_{k=1}^{2} E_{ijk} \sigma_k \]

We will construct the group table for all elements generated by products of \(\sigma_1, \sigma_2 \); each new element resulting from a multiplication will be admitted to the table constructively.

\[
\begin{array}{cccccccc}
\sigma_1 & \sigma_2 & 1 & i \sigma_2 & -i \sigma_2 & -1 & -\sigma_2 & -1 \\
\sigma_1 & 1 & i \sigma_2 & -\sigma_1 & -i \sigma_2 & \sigma_1 & \sigma_2 & \sigma_1 \\
i \sigma_2 & i \sigma_2 & 1 & -i \sigma_2 & \sigma_1 & -\sigma_1 & \sigma_2 & -\sigma_1 \\
\sigma_1 & -\sigma_1 & -i \sigma_2 & 1 & i \sigma_2 & \sigma_1 & \sigma_2 & \sigma_1 \\
-\sigma_1 & -i \sigma_2 & -1 & \sigma_1 & 1 & -i \sigma_2 & \sigma_1 & -i \sigma_2 \\
\sigma_1 & -\sigma_1 & -\sigma_2 & -1 & \sigma_2 & 1 & i \sigma_2 & \sigma_1 \\
-\sigma_1 & i \sigma_2 & 1 & \sigma_1 & -i \sigma_2 & \sigma_1 & 1 & -i \sigma_2 \\
\end{array}
\]

Yes! You can if it is consistent; every element exists once in row and column.

- Associativity is inherited by matrix multiplication.
- Neutral element: 1.
- Inverse: See multiplication table, in each row column: 1.

- The group \(G \) has the order \(|G| = 8 \).
- For \(X = \{\sigma_1, i \sigma_2, -\sigma_1, -i \sigma_2\} \), we have \(\text{ord}(X) = 2 \).
- For \(Y = \{i \sigma_2, -i \sigma_2\} \), we have \(\text{ord}(Y) = 4 \).
- And \(\text{ord}(A) = 1 \).

We now construct a trivial isomorphism \(\varphi : D_4 \to G_6 \).

\[\begin{align*}
\varphi(\sigma_1) &= \sigma_1, \quad \varphi((bc)^2) = \sigma_2, \quad \varphi(i) = 1, \quad \varphi(c^2) = i \sigma_2 \\
\varphi(c) &= i \sigma_2, \quad \varphi((c^2)^2) = -1, \quad \varphi(bc) = -\sigma_2, \quad \varphi((bc)^2) = -\sigma_1 \\
\end{align*} \]

Then \(\varphi(\sigma_1) \cdot \varphi(\sigma_2) = \varphi(i \sigma_2) \cdot \varphi(1) = \varphi(1) \cdot \varphi(1) \), obviously fulfill \(\text{ord}(\varphi(\sigma_1)) = \text{ord}(\sigma_1) \).

\[\varphi(\sigma_1) = 1 \quad \text{and} \quad \varphi(\sigma_2) = \text{ord}(\varphi(1)) = \text{ord}(1) \]
\[P(a) + P(b) = P(ab) \text{ can be checked with the multiplication tables.} \]

By construction, it is injective and because of equal sizes surjective.

The conjugacy classes can thus be taken from Table 1, as:

- \([1] = \{ e \} = \{ \sigma_1 \}, \quad [\sigma_1] = \{ \sigma_1, -\sigma_1 \} \]
- \([\sigma_2] = \{ \sigma_2, -\sigma_2 \} \]
- \([i_{\sigma_2}] = \{ i_{\sigma_2}, -i_{\sigma_2} \} \]

The SGA are:

- \(H_1 = [M], \quad H_2 = G, \quad H_2^{(2)} = [M], \quad H_2^{(3)} = [M, \sigma_1]\)
- \(H_2^{(4)} = \{ M, -\sigma_1 \}, \quad H_2^{(5)} = \{ M, \sigma_1, -\sigma_1 \}, \quad H_2^{(6)} = \{ M, \sigma_1, -\sigma_1, -\sigma_2 \}, \quad H_2^{(7)} = \{ M, -\sigma_2, -\sigma_2 \} \)

Invariant of these are:

- \(H_1 = \{ e \} \)
- \(H_2 = G \)
- \(H_2^{(2)} = [M] \cup [\sigma_1] = [M, \sigma_1] \)
- \(H_2^{(3)} = [M] \cup [\sigma_3] \cup [-\sigma_3] = \{ M, -\sigma_3, M, i_{\sigma_3} \} \)
- \(H_2^{(4)} = [M] \cup [\sigma_4] \cup [-\sigma_4] = \{ M, \sigma_4, -\sigma_4 \}, \quad H_2^{(5)} = \{ M, \sigma_4, -\sigma_4, -\sigma_1 \} \)
- \(H_2^{(6)} = [M] \cup [-\sigma_2] \cup [\sigma_2] = \{ M, \sigma_2, -M, -\sigma_2 \} \)

We now construct the quotient groups:

- \(G/H_1 = \{ M, M, -i_{\sigma_3}, -i_{\sigma_3}, i_{\sigma_3}, i_{\sigma_3}, -\sigma_1, -\sigma_1, i_{\sigma_2}, i_{\sigma_2} \} \)
- \(G/H_2 = \{ G \} \)
- \(G/H_2^{(2)} = \{ M, M, -i_{\sigma_3}, i_{\sigma_3}, -i_{\sigma_3}, i_{\sigma_3}, -\sigma_1, -\sigma_1, i_{\sigma_2}, i_{\sigma_2} \} \)
- \(G/H_2^{(3)} = \{ M, M, -i_{\sigma_3}, i_{\sigma_3}, -i_{\sigma_3}, i_{\sigma_3}, -\sigma_1, -\sigma_1, i_{\sigma_2}, i_{\sigma_2} \} \)
- \(G/H_2^{(4)} = \{ M, i_{\sigma_4}, -M, -i_{\sigma_4}, i_{\sigma_4}, -\sigma_1, -\sigma_1, -\sigma_2, \sigma_2 \} \)
- \(G/H_2^{(5)} = \{ M, i_{\sigma_4}, -M, -i_{\sigma_4}, i_{\sigma_4}, -\sigma_1, -\sigma_1, -\sigma_2, \sigma_2 \} \)
- \(G/H_2^{(6)} = \{ M, -\sigma_2, -M, \sigma_2, i_{\sigma_2}, i_{\sigma_2}, -\sigma_3, \sigma_3 \} \)

Is it ok to first show the isomorphism to \(D_4\) and then just copy the properties? Or why should it be shown last that \(G = D_4\)? Otherwise really hard to find conjugacy classes etc.?

I think yes, it is ok either ways.

\[20p \rightarrow 100p \]