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Abstract
In this article, we want to present a semi-rigorous proof of∫ ∞

−∞
dx e−ax

2+bx = eb
2/(4a)

√
π

a
, a, b ∈ C, Re(a) ≥ 0,

Re(a) = 0 =⇒ Im(a) 6= 0 ∧ Re(b) = 0,

where the integral on the left-hand side is also known as a ‘Gaussian Integral’. In the
lecture, we were a bit careless in extending the validity of this formula from a ∈ R+,
b = 0 to a ∈ C, Re(a) > 0, b = 0, then to a, b ∈ C, Re(a) > 0, and ultimately to
a, b ∈ C, Re(a) ≥ 0, and we will see that it is in fact not trivial at all to extend the
formula to the complex plane. We want to emphasize that the result is well known
and our proof will be based on ideas from many different references, in particular
Refs. [1, 2, 3, 4, 5, 6, 7], that is much of this article will be the intellectual property of
other authors — we want to apologize to the authors for not citing these references
properly throughout this work. However, we do not only collect the arguments of
said references in a clear and comprehensible manner here but we also supplement
them by some own input and explanations. Moreover, we will make use of certain
results (that is e.g. theorems) from the Refs. [8, 9, 10, 11, 12], which we will also cite
appropriately where needed. The Refs. [13, 14] might be interesting to the reader
as well but are beyond the scope of this work; one of these references is an open
question (at the time of writing) on StackExchange that will be referred to again
in this article. It is likely that Mathematicians will not consider our proof to be
rigorous — which is why we call it a semi-rigorous proof in the first place — since
we might be a little bit sloppy regarding the validity of certain steps. For the reader
who wants to learn more on Gaussian integrals and complex analysis, we refer to
the above references.



1 The Gaussian Integral

It is the ultimate goal of this article to prove the following theorem, where we will
proceed in small steps by proving several minor results.

Theorem 1. Let a, b ∈ C with Re(a) ≥ 0, where Re(a) = 0 requires Im(a) 6= 0 and
Re(b) = 0. Then ∫ ∞

−∞
dx e−ax

2+bx = eb
2/(4a)

√
π

a
.

1.1 Real Coefficient without Offset

In a first step, we consider b = 0 and a ∈ R+, leading to the following Lemma.

Lemma 2. Let a ∈ R+. Then ∫ ∞
−∞

dx e−ax
2

=

√
π

a
.

Proof. We define

I(a) :=

∫ ∞
−∞

dx e−ax
2

,

where it is easy to see that the integral diverges for a ∈ R− ∪ {0}, namely∫ ∞
−∞

dx e−ax
2 ã:=−a≥0

=

∫ ∞
−∞

dx eãx
2 ≥

∫ ∞
−∞

dx 1→∞,

while for a ∈ R+, we have∫ ∞
−∞

dx e−ax
2

= 2

∫ ∞
0

dx e−ax
2

= 2

[∫ 1

0

dx e−ax
2

+

∫ ∞
1

dx e−ax
2

]

< 2

[∫ 1

0

dx e−ax
2

+

∫ ∞
1

dx e−ax
]

= 2

∫ 1

0

dx e−ax
2

︸ ︷︷ ︸
finite

−1

a
e−ax

∣∣∣∣∞
1

 <∞.
Here, we used that the function f(x) = e−ax

2 is continuous (thus bounded) on the
compact interval I = [0, 1] and the fact that integrating such a function over that
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interval yields a finite result. In order to find the value of I(a) for a ∈ R+, we now
consider said expression squared, i.e.

I(a)I(a) =

∫ ∞
−∞

dx e−ax
2

∫ ∞
−∞

dy e−ay
2 Fubini

=

∫
R2

dx dy e−a(x2+y2)

pol.
=

coord.

∫ ∞
0

dr

∫ 2π

0

dθ re−ar
2

= 2π

[
− 1

2a
e−ar

2

] ∣∣∣∣∞
0

=
π

a
,

so that we readily deduce the value of I(a) by taking the square root of this ex-
pression.1 In calculating the above, we used Fubini’s theorem and introduced polar
coordinates [8, 9].

1.2 Complex Coefficient without Offset

We now want to extend the validity of the above result to the complex, that is b = 0

and a ∈ C with Re(a) > 0; more specifically, we have the following Corollary.

Corollary 3. Let a ∈ C with Re(a) > 0. Then∫ ∞
−∞

dx e−ax
2

=

√
π

a
.

Proof. We start with the result of Lemma 2 and observe that the left-hand and
right-hand side of that equation are analytic expressions of a ∈ C provided that
Re(a) > 0. Indeed, the left-hand side is analytic in this case since∣∣∣∣∫ ∞

−∞
dx e−ax

2

∣∣∣∣ ≤ ∫ ∞
−∞

dx
∣∣∣e−ax2∣∣∣ =

∫ ∞
−∞

dx e−Re(a)x2 <∞

for Re(a) > 0, as shown before. Moreover, regarding the right-hand side, the func-
tion g(a) =

√
π/
√
a is analytic for a ∈ C \ (−∞, 0], choosing the principal square

root function for evaluation; in order to see this, note that h(a) =
√
a is analytic for

a ∈ C \ (−∞, 0] on the principal branch of the square root, whereas it has a branch
cut for a ∈ (−∞, 0], and that the reciprocal of an analytic function is analytic where
the function is analytic except for the region where the function is zero, i.e. a = 0,
making the reciprocal singular.2 Having argued that the left-hand and right-hand

1The idea of this proof goes back to Poisson [2]. There are many more ways to calculate the
value of the integral I(a), see e.g. Ref. [3].

2Unfortunately, I am not able to provide a proof for the divergence of
∫∞
−∞ dx e−ax

2

, a ∈ C,
Re(a) < 0; I opened a thread on StackExchange for this [14]. However, to some extent, it
appears clear that this is the case because

∫∞
−∞ dx e−ax

2

=
∫∞
−∞ dx e−(Re(a)+iIm(a))x2

, where
|e−iIm(a)x2 | = 1 is oscillating and

∫∞
−∞ dx e−Re(a)x2

diverges for Re(a) < 0, as shown before.
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side of the equation in Lemma 2 are analytic expressions of a ∈ C if Re(a) > 0,
we can use the identity theorem [10, 11, 12] to perform the analytic continuation of
said equation to a ∈ C with Re(a) > 0.

In a next step, we want to perform the analytic continuation of the formula to
b = 0 and a ∈ C with Re(a) ≥ 0, where Re(a) = 0 requires Im(a) 6= 0, i.e. we want
to also cover the case Re(a) = 0. This is compiled in the following Lemma.

Lemma 4. Let a ∈ C with Re(a) = 0 and Im(a) 6= 0. Then∫ ∞
−∞

dx e−ax
2

=

√
π

a
.

Proof. We start by observing that Im(a) 6= 0 is a necessary condition for a ∈ C,
Re(a) = 0 because the integral would trivially diverge otherwise,∫ ∞

−∞
dx e−ax

2 Re(a)=0
=

Im(a)=0

∫ ∞
−∞

dx 1→∞.

Although one might be tempted to prove the Lemma with the help of the identity
theorem as well, the analyticity property of the left-hand side of the equation in
Lemma 2 cannot be extended to Re(a) = 0 as easy as it was the case for Re(a) > 0;
in particular, neither the left-hand nor the right-hand side of said equation are
analytic for Re(a) = 0 = Im(a).3 Instead, we let a ∈ C, Re(a) = 0, Im(a) 6= 0,
where we assume Im(a) < 0 w.l.o.g. and consider the closed contour integration∮

Γ(m)

dz e−iIm(a)z2 = 0,

where Γ(m) is the integration contour depicted in Fig. 1, m ∈ R+ being some
arbitrary constant, and the integration vanishes due to Cauchy’s theorem [10, 11]
and the fact that the integrand k(z) = e−iIm(a)z2 is an analytic function in the region
enclosed by Γ(m) and on its boundary. We split the integration contour into the
three parts γ1(m), γ2(m), and γ3(m), so that∮
Γ(m)

dz e−iIm(a)z2 =

∫
γ1(m)

dz e−iIm(a)z2

︸ ︷︷ ︸
γ1(m): z=x, x∈[0,m]

+

∫
γ2(m)

dz e−iIm(a)z2

︸ ︷︷ ︸
γ2(m): z=m+iy, y∈[0,m]

+

∫
γ3(m)

dz e−iIm(a)z2

︸ ︷︷ ︸
γ3(m): z=x+ix=

√
2eiπ/4x, x∈[m,0]

3Here, too, I am unable to provide a direct proof for the convergence of the integral for a ∈ C,
Re(a) = 0, Im(a) 6= 0, which is also part of my aforementioned question on StackExchange [14].
Nevertheless, we will explicitly calculate the integral and hence — a posteriori — see that it
exists. Note that if we could prove the existence/analyticity beforehand, we were allowed to
analytically continue to Re(a) = 0, Im(a) 6= 0 with the help of the identity theorem.
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Re(z) = x

Im(z) = y

m
45◦

m

γ1(m)

γ2(m)
γ3(m)

Figure 1: The closed integration contour Γ(m) split into the three pieces γ1(m),
γ2(m), and γ3(m), i.e. Γ(m) = γ1(m) ∪ γ2(m) ∪ γ3(m).

=

∫ m

0

dx e−iIm(a)x2 +

∫ m

0

dy ie−iIm(a)(m+iy)2 +

∫ 0

m

dx
√

2eiπ/4e−iIm(a)(2i)x2 .

One readily deduces that the integration over γ2(m) vanishes in the limit m→∞,
in particular∣∣∣∣∫ m

0

dy ie−iIm(a)(m+iy)2
∣∣∣∣ ≤ ∫ m

0

dy
∣∣∣e−iIm(a)(m+iy)2

∣∣∣ =

∫ m

0

dy e2Im(a)my

=

[
1

2Im(a)m
e2Im(a)my

] ∣∣∣∣m
0

=
e2Im(a)m2 − 1

2Im(a)m

m → ∞→
Im(a)<0

0.

Then, using the result of Cauchy’s theorem from above, we find∫ ∞
0

dx e−iIm(a)x2 = −
√

2eiπ/4

∫ 0

∞
dx e2Im(a)x2 x≡x̃:=

√
2x

= eiπ/4

∫ ∞
0

dx eIm(a)x2

in the limit m →∞ and thus∫ ∞
−∞

dx e−iIm(a)x2 = 2

∫ ∞
0

dx e−iIm(a)x2 = 2eiπ/4

∫ ∞
0

dx eIm(a)x2 = eiπ/4

∫ ∞
−∞

dx eIm(a)x2

Im(a)<0
=
√

i

√
π

−Im(a)
=

√
π

iIm(a)
.

where we chose the principal branch of the square root in order to evaluate eiπ/4.
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By taking the complex conjugate of the second last equation, we find∫ ∞
0

dx eiIm(a)x2 = e−iπ/4

∫ ∞
0

dx eIm(a)x2 ,

so that — again using the principal branch of the square root — we similarly obtain∫ ∞
−∞

dx e−(−iIm(a))x2 =

∫ ∞
−∞

dx eiIm(a)x2 = e−iπ/4

∫ ∞
−∞

dx eIm(a)x2 Im(a)<0
=
√
−i

√
π

−Im(a)

=

√
π

−iIm(a)
.

Note that by the last and third from last equation we cover both cases of Im(a) 6= 0

in Lemma 4, namely Im(a) > 0 and Im(a) < 0.

1.3 Complex Coefficient with Offset

In a final step, we want to include a linear offset in the exponential function, i.e.
a, b ∈ C with Re(a) ≥ 0 and where Re(a) = 0 requires Im(a) 6= 0 and Re(b) = 0.
This is what is compiled in Theorem 1 and will be proven in the following.

Proof of Theorem 1. We let a, b ∈ C, Re(a) ≥ 0, where we require Im(a) 6= 0 and
Re(b) = 0 if Re(a) = 0, for otherwise the integral diverges due to Lemma 4 and∫ ∞

−∞
dx e−ax

2+bx =

∫ ∞
−∞

dx eiIm(b)x, for Im(a) = 0,Re(b) = 0,∫ ∞
−∞

dx e−ax
2+bx =

∫ ∞
−∞

dx eRe(b)x+iIm(b)x, for Im(a) = 0,Re(b) 6= 0,∫ ∞
−∞

dx e−ax
2+bx =

∫ ∞
−∞

dx eRe(b)x−i(Im(a)x2−Im(b)x), for Im(a) 6= 0,Re(b) 6= 0,

which give ill-defined expressions, the first of these being connected to a well-known
representation of the Dirac delta distribution in Fourier analysis.4 To continue
with the proof, let us complete the square in the exponential function,∫ ∞

−∞
dx e−ax

2+bx =

∫ ∞
−∞

dx e−a(x−b/(2a))2+b2/(4a) = eb
2/(4a)

∫ ∞
−∞

dx e−a(x−b/(2a))2

x≡x̂:=x− b
2a=

b
2a

=Re( b
2a

)+iIm( b
2a

)
eb

2/(4a)

∫ ∞−iIm( b
2a

)

−∞−iIm( b
2a

)

dx e−ax
2

.

4As the reader may have noticed, we are being more and more sloppy about anything relating
to the convergence and divergence of the considered integrals, which is merely due to our
incapability of providing rigorous proofs for this; as before, we refer the reader to Refs. [13, 14].
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Re(z) = x

Im(z) = y

−m̃ m̃

m̃− iIm( b
2a

)−m̃− iIm( b
2a

)
↗ ↖

γ̃1(m̃)

γ̃2(m̃)

γ̃3(m̃)

γ̃4(m̃)

Figure 2: The closed integration contour Γ̃(m̃) split into the four pieces γ̃1(m̃),
γ̃2(m̃), γ̃3(m̃), and γ̃4(m̃), i.e. Γ̃(m̃) = γ̃1(m̃) ∪ γ̃2(m̃) ∪ γ̃3(m̃) ∪ γ̃4(m̃).

The case Re(a) = 0, Im(a) 6= 0, Re(b) = 0 now follows immediately, given that it
implies Im(b/(2a)) = 0 and thus by Lemma 4

∫ ∞
−∞

dx e−ax
2+bx = eb

2/(4a)

∫ ∞−iIm( b
2a

)

−∞−iIm( b
2a

)

dx e−ax
2 Re(a)=0, Im(a) 6=0

=
Re(b)=0

eb
2/(4a)

∫ ∞
−∞

dx e−ax
2

Re(a)=0
=

Im(a)6=0

√
π

a
.

In order to calculate the integral in the second last equality for Re(a) > 0, we now
assume Im(b/(2a)) > 0 w.l.o.g. (for Im(b/(2a)) < 0, we merely have to mirror the
integration contour at the x-axis) and consider the closed contour integration∮

Γ̃(m̃)

dz e−az
2

= 0,

where Γ̃(m̃) is the integration contour depicted in Fig. 2, m̃ ∈ R+ being some
arbitrary constant, and, similar to before, the integration vanishes due to Cauchy’s
theorem [10, 11] and the fact that the integrand p(z) = e−az

2 is an analytic function
in the region enclosed by Γ̃(m̃) and on its boundary. We split the integration contour
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into the four parts γ̃1(m̃), γ̃2(m̃), γ̃3(m̃), and γ̃4(m̃), so that∮
Γ̃(m̃)

dz e−az
2

=

∫
γ̃1(m̃)

dz e−az
2

︸ ︷︷ ︸
γ̃1(m̃): z=x, x∈[−m̃,m̃]

+

∫
γ̃2(m̃)

dz e−az
2

︸ ︷︷ ︸
γ̃2(m̃): z=m̃+iy, y∈[0,−Im( b

2a
)]

+

∫
γ̃3(m̃)

dz e−az
2

︸ ︷︷ ︸
γ̃3(m̃): z=x−iIm( b

2a
), x∈[m̃,−m̃]

+

∫
γ̃4(m̃)

dz e−az
2

︸ ︷︷ ︸
γ̃4(m̃): z=−m̃+iy, y∈[−Im( b

2a
),0]

=

∫ m̃

−m̃
dx e−ax

2

+

∫ −Im( b
2a

)

0

dy ie−a(m̃+iy)2 +

∫ −m̃
m̃

dx e−a(x−iIm(b/(2a)))2

+

∫ 0

−Im( b
2a

)

dy ie−a(−m̃+iy)2 .

Similar to the proof of Lemma 4, we find that the contributions from γ̃2(m̃) and
γ̃4(m̃) vanish in the limit m̃→∞. In particular, we have∣∣∣∣∣

∫ −Im( b
2a

)

0

dy ie−a(m̃+iy)2

∣∣∣∣∣ ≤
∫ −Im( b

2a
)

0

dy
∣∣∣e−(Re(a)+iIm(a))(m̃2−y2+2im̃y)

∣∣∣
= e−Re(a)m̃2

∫ −Im( b
2a

)

0

dy eRe(a)y2+2Im(a)m̃y m̃→∞→
Re(a)>0

0,

where we used that q(y) = eRe(a)y2+2Im(a)m̃y is continuous (thus bounded) on the
compact interval J = [0,−Im(b/(2a))] for finite (but large) m̃ and that the function
u(m̃) = e−Re(a)m̃2 decreases way faster than v(m̃) = e2Im(a)m̃y potentially grows in
the limit m̃→∞ for y ∈ J and arbitrary Im(a).5 Analogously, we find∣∣∣∣∣

∫ 0

−Im( b
2a

)

dy ie−a(−m̃+iy)2

∣∣∣∣∣ m̃→∞→ 0.

Then, using the result of Cauchy’s theorem from above, we find

∫ ∞
−∞

e−ax
2

= −
∫ −∞
∞

dx e−a(x−iIm(b/(2a)))2 x≡x̌:=x−iIm( b
2a

)
=

∫ ∞−iIm( b
2a

)

−∞−iIm( b
2a

)

dx e−ax
2

in the limit m̃ →∞ and hence with Corollary 3

∫ ∞−iIm( b
2a

)

−∞−iIm( b
2a

)

dx e−ax
2

=

∫ ∞
−∞

e−ax
2 Re(a)>0

=

√
π

a
.

5One can for example also check the vanishing of the above expression in the limit m̃→∞ with
the help of Mathematica.
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2 Summary

In this article, we provided a semi-rigorous proof for the value of the Gaussian
integral,∫ ∞

−∞
dx e−ax

2+bx = eb
2/(4a)

√
π

a
, a, b ∈ C, Re(a) ≥ 0,

Re(a) = 0 =⇒ Im(a) 6= 0 ∧ Re(b) = 0.

We proceeded by proving several minor results, first restricting to b = 0 and the
domain of a to the reals and then extending the validity of this formula to complex
values of a by analytic continuation. The final result was then proved by including
a linear offset, b 6= 0.
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