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Abstract
In these notes, we present some details on the calculation of

G±(x,x
′) :=

ℏ2

2m
⟨x

∣∣(E − Ĥ0 ± iϵ)−1
∣∣x′⟩

= − 1

4π

e±ik|x−x′|

|x− x′|

performed in the lecture, which represents a so-called propagator in position space
and appeared in the context of the Lippmann–Schwinger equation. Here, the
energy is given by E = ℏ2k2/(2m), with k = |k|. We will not prove that this
function indeed is the Green’s function of the Helmholtz equation, i.e., that it
fulfills

(∇2 + k2)G±(x,x
′) = δ(3)(x− x′),

which is part of this term’s exercise sheets. In order to keep the actual calculation
as clear and comprehensible as possible, we proceed in two steps: we first state and
prove three minor theorems from complex analysis and then, making use of the last
of these theorems, proceed with the aforementioned calculation in the main part of
our notes. The ideas presented in our notes are based on Refs. [1–5] and we refrain
from repeatedly citing these. For more details and rigorous proofs of the theorems
presented here, the interested reader is referred to the above references and his or
her favorite book on complex analysis.



1. Theorems

In this section, we prove the so-called Estimation Lemma/ML Inequality [4] and two
propositions [3] that can be deduced from it. The latter of these propositions will
be used for the calculation of the Helmholtz equation’s Green’s function in the
main part of our notes. Note that our proofs lack mathematical rigor for the sake
of comprehensibility; the reader who wants to see a more rigorous proof should be
able to do so in his or her favorite book on complex analysis.

Lemma 1 (Estimation Lemma/ML Inequality). Let f(z) : Ω → C be a complex-
valued, continuous function on Ω ⊆ C and γ : [ti, tf ] → Ω a curve parameterized by
the interval [ti, tf ] ⊆ R. If |f(z)| is bounded on γ, i.e., M := supz∈γ|f(z)| < ∞
exists, then ∣∣∣∣ ∫

γ

dz f(z)

∣∣∣∣ ≤ ML(γ),

where

L(γ) :=

∫ tf

ti

dt |γ′(t)|

is the arc length of the curve.

Proof. We insert the definition of the complex contour integral by means of the
parameterization of the curve γ and use the triangle inequality for complex integrals
to find ∣∣∣∣ ∫

γ

dz f(z)

∣∣∣∣ = ∣∣∣∣ ∫ tf

ti

dt f(γ(t))γ′(t)

∣∣∣∣
≤

∫ tf

ti

dt |f(γ(t))||γ′(t)|.

Since, by assumption, M = supz∈γ|f(z)| exists and represents a constant upper
bound for the function’s absolute value on γ, |f(z)| ≤ M for z ∈ γ, we have∣∣∣∣ ∫

γ

dz f(z)

∣∣∣∣ ≤ M

∫ tf

ti

dt |γ′(t)| = ML(γ),

where we used the definition of the length of the curve, L(γ).

Proposition 2. Let f±(z) : R → C be a complex-valued, continuous function that
can be analytically continued into the upper (f+(z)) or lower (f−(z)) complex half-
plane H± := {z ∈ C : ±Imz > 0} except for a countable set of poles {a1, . . . , an} ∈ C,
i.e., f±(z) : H± \{a1, . . . , an} → C (and, by analytic continuation, is also continuous
there). In particular, we further assume that f±(z) can be written as the quotient of
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Figure 1: The integration contours Γ±(R) = [−R,R] ∪ γ±(R) in the complex plane,
given by a straight line of length 2R on the x-axis and an upper/lower arc
of radius R.

two polynomials p(z) and q(z),

f±(z) =
p(z)

q(z)
,

with deg(p) ≤ deg(q)− 2 and q(z) has no real zeroes, i.e., q(z) ̸= 0 for z ∈ R. Then,∫ ∞

−∞
dz f±(z) = lim

R→∞

∮
Γ±(R)

dz f±(z),

where Γ±(R) are the closed contours depicted in Fig. 1.

Proof. Since, by assumption, p(z) and q(z) are polynomials, we have

p(z) =

deg(p)∑
i=0

αiz
i, q(z) =

deg(q)∑
i=0

βiz
i.

Using the (reverse) triangle inequality, we obtain

|p(z)| ≤ |αdeg(p)||z|deg(p) +
∣∣∣ deg(p)−1∑

i=0

αiz
i
∣∣∣ = |z|deg(p)

(
|αdeg(p)|+

∣∣∣ deg(p)−1∑
i=0

αi
zi

zdeg(p)

∣∣∣),
|q(z)| ≥

∣∣∣∣|βdeg(q)||z|deg(q) −
∣∣∣ deg(q)−1∑

i=0

βiz
i
∣∣∣∣∣∣∣ = |z|deg(q)

∣∣∣∣|βdeg(q)| −
∣∣∣ deg(q)−1∑

i=0

βi
zi

zdeg(q)

∣∣∣∣∣∣∣,
where ∣∣∣ deg(r)−1∑

i=0

ρi
zi

zdeg(r)

∣∣∣ ≤ deg(r)−1∑
i=0

|ρi|
∣∣∣ zi

zdeg(r)

∣∣∣ |z|→∞→ 0
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for both r(z) ∈ {p(z), q(z)}, ρi ∈ {αi, βi}. Hence, by definition, for all ε > 0, there
exists B > 0 such that ∣∣∣ deg(r)−1∑

i=0

ρi
zi

zdeg(r)

∣∣∣ < ε

for |z| > B, e.g., ε = |ρdeg(r)|/2. In other words, there exist constants cp, cq ∈ R such
that |p(z)| ≤ cp|z|deg(p) and |q(z)| ≥ cq|z|deg(q) for sufficiently large |z|. Consequently,∣∣∣∣p(z)q(z)

∣∣∣∣ ≤ cp|z|deg(p)

cq|z|deg(q) ≤ c

|z|2

for c := cp/cq ∈ R and large enough |z| due to the assumption deg(p) ≤ deg(q)− 2.
In order to prove the proposition,∫ ∞

−∞
dz

p(z)

q(z)
= lim

R→∞

∮
Γ±(R)

dz
p(z)

q(z)
,

we will show that
lim
R→∞

∫
γ±(R)

dz
p(z)

q(z)
= 0,

where γ±(R) are the arcs depicted in Fig. 1. To this end, we parameterize the
integration contour by means of

γ±(R) : z = Re±iφ,

where φ ∈ [0, π], so that |z| = R. Assuming R large and using Lemma 1 with

Mγ±(R) = sup
z∈γ±(R)

∣∣∣∣p(z)q(z)

∣∣∣∣ ≤ sup
z∈γ±(R)

c

|z|2
=

c

R2

and L(γ±(R)) = πR, we thus obtain∣∣∣∣ ∫
γ±(R)

dz
p(z)

q(z)

∣∣∣∣ ≤ Mγ±(R)L(γ±(R)) ≤ πc

R

R→∞→ 0.

Since the integral vanishes if its absolute value does, this completes the proof.

Remark in advance: the assumptions of the second proposition are very similar
to the assumptions of the first one. However, instead of assuming that f(z) is
merely given by the quotient of two polynomials, we additionally multiply it with
an exponential function here. As a result, the condition imposed on the degrees of
the polynomials can be relaxed a bit but, at the same time, the analytic continuation
into the upper/lower complex half-plane depends on the sign in the exponential.
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Figure 2: The closed integration contours Γ̃±(R) = [−R,R] ∪ γ̃±,1(R) ∪ γ̃±,2(R) ∪
γ̃±,3(R) in the complex plane, given by a straight line of length 2R, which
is completed to an upper/lower rectangle with height

√
R.

Proposition 3. Let g±(z) : R → C be a complex-valued, continuous function that
can be analytically continued into the upper (g+(z)) or lower (g−(z)) complex half-
plane H± := {z ∈ C : ±Imz > 0} except for a countable set of poles {a1, . . . , an} ∈ C,
i.e., g±(z) : H± \{a1, . . . , an} → C (and, by analytic continuation, is also continuous
there). In particular, we further assume that g±(z) is of the form

g±(z) =
P (z)

Q(z)
e±iαz,

where P (z) and Q(z) are two polynomials with deg(P ) ≤ deg(Q) − 1, α > 0, and
Q(z) has no real zeroes, i.e., Q(z) ̸= 0 for z ∈ R. Then,∫ ∞

−∞
dz g±(z) = lim

R→∞

∮
Γ̃±(R)

dz g±(z),

where Γ̃±(R) are the closed contours depicted in Fig. 2.

Proof. Similar to the proof of Proposition 2, we can find a constant C ∈ R such that∣∣∣∣P (z)

Q(z)

∣∣∣∣ ≤ C

|z|

for large |z| due to the assumption deg(P ) ≤ deg(Q)− 1. In order to prove∫ ∞

−∞
dz

P (z)

Q(z)
e±iαz = lim

R→∞

∮
Γ̃±(R)

dz
P (z)

Q(z)
e±iαz,

we will show that
lim
R→∞

∫
γ̃±,i(R)

dz
P (z)

Q(z)
e±iαz = 0
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for i = 1, 2, 3, where γ̃±,i(R) are the curves depicted in Fig. 2. To this end, we
parameterize

γ̃±,1(R) : z = R± i
√
r, r ∈ [0, R] =⇒ R ≤ |z| ≤

√
R2 +R,

γ̃±,2(R) : z = r ± i
√
R, r ∈ [R,−R] =⇒

√
R ≤ |z| ≤

√
R2 +R,

γ̃±,3(R) : z = −R± i
√
r, r ∈ [R, 0] =⇒ R ≤ |z| ≤

√
R2 +R,

so that

|e±iαz| =


e−α

√
r, z ∈ γ̃±,1(R),

e−α
√
R, z ∈ γ̃±,2(R),

e−α
√
r, z ∈ γ̃±,3(R),

and L(γ̃±,i(R)) =


√
R, i = 1,

2R, i = 2,
√
R, i = 3.

Hence, Lemma 1 can be used with

Mγ̃±,i(R) = sup
z∈γ̃±,i(R)

∣∣∣∣P (z)

Q(z)
e±iαz

∣∣∣∣ ≤ sup
z∈γ̃±,i(R)

C

|z|
|e±iαz| ≤


supr∈[0,R]

C
R
e−α

√
r, i = 1,

supr∈[R,−R]
C√
R
e−α

√
R, i = 2,

supr∈[R,0]
C
R
e−α

√
r, i = 3,

=


C
R
, i = 1,

C√
R
e−α

√
R, i = 2,

C
R
, i = 3,

leading to

∣∣∣∣ ∫
γ̃±,i(R)

dz
P (z)

Q(z)
e±iαz

∣∣∣∣ ≤ Mγ̃±,i(R)L(γ̃±,i(R)) ≤


C√
R
, i = 1,

2C
√
Re−α

√
R, i = 2,

C√
R
, i = 3,

R→∞→ 0.

Since the integrals vanish if their absolute value does, this completes the proof.

Two remarks regarding the above proof are in order: first, had we used a rectangle
in the lower (upper) complex half-plane for f+(z) (f−(z)), the exponential functions
would have blown up for R → ∞ and the integrals over γ̃∓,i(R) would not have

7



vanished, since

|e±iαz| =


eα

√
r, z ∈ γ̃∓,1(R),

eα
√
R, z ∈ γ̃∓,2(R),

eα
√
r, z ∈ γ̃∓,3(R).

Secondly, it is not possible to use an upper (lower) arc in the complex half-plane for
f+(z) (f−(z)) with Lemma 1, as it was done for the proof of Proposition 2, because
the resulting estimates are not strong enough, yielding

M̃γ±(R) = sup
z∈γ±(R)

∣∣∣∣P (z)

Q(z)
e±iαz

∣∣∣∣ ≤ sup
z∈γ±(R)

C

|z|
|e±iαz| = sup

φ∈[0,π]

C

R
e−αR sinφ =

C

R

and thus ∣∣∣∣ ∫
γ±(R)

dz
P (z)

Q(z)
e±iαz

∣∣∣∣ ≤ Cπ ̸= 0.

If, however, deg(P ) ≤ deg(Q)− 2 holds for the case with the exponential function,
it is possible to use the upper/lower arc with Lemma 1 again. Moreover, one can
use less restrictive estimates that indeed allow for the use of an upper/lower arc also
for the case deg(P ) ≤ deg(Q)− 1, see Jordan’s lemma [5].

2. The Helmholtz Equation’s Green’s Function

in Position Space

The object we investigate in these notes is the operator Ĝ0(E) := (E − Ĥ0 ± iϵ)−1

evaluated in position space, with Ĥ0 = p̂2/(2m) being the Hamiltonian of a free
particle, i.e.,

G±(x,x
′) :=

ℏ2

2m
⟨x

∣∣(E − Ĥ0 ± iϵ)−1
∣∣x′⟩ .

Here, the energy is given by E = ℏ2k2/(2m), with k = |k|. The factor of ℏ2/(2m) has
been attached for convenience, as will become clear in the course of the calculation,
see also the lecture notes.

We start by making use of the completeness relation in momentum space (twice),

1 =

∫
d3p

(2πℏ)3
|p⟩ ⟨p| ,

leading to

G±(x,x
′) =

ℏ2

2m

∫
d3p

(2πℏ)3

∫
d3p′

(2πℏ)3
⟨x|p⟩ ⟨p|(E − Ĥ0 ± iϵ)−1|p′⟩ ⟨p′| x′⟩ .
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Since |p(′)⟩ is an eigenstate of Ĥ0 with eigenvalue (energy) E(′)
0 = p(′)

2
/(2m), where

p(′) = |p(′)|, and ⟨x|p⟩ = ei/ℏp·x = ⟨p|x⟩∗, we find

G±(x,x
′) =

ℏ2

2m

∫
d3p

(2πℏ)3

∫
d3p′

(2πℏ)3
ei/ℏp·x(E − E

(′)
0 ± iϵ)−1 ⟨p|p′⟩ e−i/ℏp′·x′

.

Using that ⟨p|p′⟩ = (2πℏ)3δ(3)(p − p′) due to the orthogonality of the momentum
states and the proper normalization, we obtain

G±(x,x
′) =

ℏ2

2m

∫
d3p

(2πℏ)3
ei/ℏp·(x−x′)

E − E0 ± iϵ
.

Performing the change of variables p = ℏq, i.e., E0 = ℏ2q2/(2m), q = |q|, we
arrive at

G±(x,x
′) =

∫
d3q

(2π)3
eiq·(x−x′)

k2 − q2 ± iϵ′
,

where ϵ′ = 2m/ℏ2 ϵ is still infinitesimally small and takes the role of ϵ. Next, we
define the angle θ by means of θ = ∠(q,x− x′), i.e., q · (x− x′) = q|x− x′| cos θ,
and choose (rotate) the coordinate system such that this angle coincides with the
system’s polar angle, which can be achieved by having q point into the positive z

direction. Transforming to polar coordinates, the above expression then becomes

G±(x,x
′) =

1

(2π)3

∫ ∞

0

dq q2
∫ 1

−1

d cos θ

∫ 2π

0

dϕ
eiq|x−x′| cos θ

k2 − q2 ± iϵ′
.

Performing the integrations over the two angles, we finally obtain

G±(x,x
′) =

1

4π2

1

i|x− x′|

∫ ∞

0

dq q
eiq|x−x′| − e−iq|x−x′|

k2 − q2 ± iϵ′
,

which, since the integrand is symmetric (even) under q → −q, can be written as an
integration over the full real domain with an additional factor of 1/2,

G±(x,x
′) = − 1

8π2

1

i|x− x′|

∫ ∞

−∞
dq q

eiq|x−x′| − e−iq|x−x′|

q2 − k2 ∓ iϵ′
.

Note the swap in the sign of the ±iϵ′ term due to the factorized minus sign in the
last step.

In order to evaluate this integral, we will make use of the residue theorem. To
this end, we define

I±(x,x
′) :=

∫ ∞

−∞
dq q

eiq|x−x′| − e−iq|x−x′|

q2 − k2 ∓ iϵ′

9
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Figure 3: The poles of the integrand defined by I+(x,x
′) (left) and I−(x,x

′) (right)
in the complex q-plane.

and note that the (first-order) poles of the integrand are located at

q±,1 =
√
k2 ± iϵ′ = k

√
1± iϵ′

k2
≈ k

(
1± iϵ′

2k2

)
= k ± iϵ̃,

q±,2 = −
√
k2 ± iϵ′ = −k

√
1± iϵ′

k2
≈ −k

(
1± iϵ′

2k2

)
= −(k ± iϵ̃) = −q±,1,

where ϵ̃ = ϵ′/(2k) is still infinitesimally small and substitutes the role of ϵ′, see
Figure 3. In other words, the denominator can be written as

q2 − k2 ∓ iϵ′ = (q − q±,1)(q + q±,1) = [q − (k ± iϵ̃)][q + (k ± iϵ̃)].

We then make use of Proposition 3 to obtain

I±(x,x
′) = lim

R→∞

[ ∮
Γ̃+(R)

qeiq|x−x′|

q2 − k2 ∓ iϵ′︸ ︷︷ ︸
=:F±(q)

−
∮
Γ̃−(R)

qe−iq|x−x′|

q2 − k2 ∓ iϵ′︸ ︷︷ ︸
=:G±(q)

]
,

which, using the residue theorem and the fact that only one of the poles lies inside
of the integration contour for each integral, see Fig. 3, evaluates to

I±(x,x
′) = 2πi

[
Res[F±(q),±(k ± iϵ̃)︸ ︷︷ ︸

=±q±,1

] + Res[G±(q),∓(k ± iϵ̃)︸ ︷︷ ︸
=∓q±,1

]
]

Here, we used that the winding numbers of Γ̃±(R) around the corresponding poles
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are given by indΓ̃±(R)(q±,1/2) = ±1. Calculating the residues, we thus find

I±(x,x
′) = 2πi

[
qeiq|x−x′|

q ± q±,1

∣∣∣∣
q=±q±,1

+
qe−iq|x−x′|

q ∓ q±,1

∣∣∣∣
q=∓q±,1︸ ︷︷ ︸

= 1
2

[
e±iq±,1|x−x′|+e±iq±,1|x−x′|

]
]
= 2πie±iq±,1|x−x′|

ϵ→0→ 2πie±ik|x−x′|.

In total, we thus obtain

G±(x,x
′) = − 1

8π2

1

i|x− x′|

∫ ∞

−∞
dq q

eiq|x−x′| − e−iq|x−x′|

q2 − k2 ∓ iϵ′︸ ︷︷ ︸
=I±(x,x′)

= − 1

4π

e±ik|x−x′|

|x− x′|
,

which completes our calculation.

3. Summary

In these notes, we calculated the Green’s function of the Helmholtz equation in
position space,

G±(x,x
′) :=

ℏ2

2m
⟨x

∣∣(E − Ĥ0 ± iϵ)−1
∣∣x′⟩

= − 1

4π

e±ik|x−x′|

|x− x′|
,

where E = ℏ2k2/(2m) and k = |k|. In order to do so, we stated and proved three
minor theorems from complex analysis, where we abstained from presenting rigorous
proofs and focused on comprehensibility instead, aiming at graduate students in
physics as readers.
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