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«Il n’y a pas plus sourd que celui qui ne veut pas entendre.»

– A french saying

1 Problem: A Rotating Charged Sphere

The following exercise can be found in a similar form in [2, p. 247].
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Figure 1: The rotating sphere with a circular segment exemplarily marked in red.
Throughout the whole problem, we will work in spherical coordinates.
TikZ template taken from [1] and modified to make it better fit this
problem.

A uniformly charged sphere with radius R and surface charge density � is rotating
in the vacuum with constant angular velocity ! = |~!| around the symmetry axis z,
i.e. ~! = !êz. We choose the center of the sphere at the origin (0, 0, 0) (see Fig. 1).

a) Calculate the magnetic dipole moment ~m of the sphere. You can can break
the sphere up in thin slices perpendicular to the rotation axis (see Fig. 1).
Then you can use the result for the magnetic moment of a circular conducting
ring and integrate the slices over the whole sphere.

b) Determine the vector potential ~A(~r). To this end, expand the vector potential
in spherical harmonics and write sin(✓) · ê� in terms of spherical harmonics.
Having done so, you have to use their orthogonality. Hint: Make a distinction

between the two cases of inside and outiside the sphere.

c) Calculate the magnetic field ~B(~r) in the inside and for the outside of the
sphere. Show that outside of the sphere, the magnetic field takes the form of
a magnetic dipole. Determine the corresponding magnetic dipole moment ~m

and compare to part a).
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We now want to replace the sphere by a uniformly charged ball. The radius remains
R and the charge on the ball is Q. The ball is, as before, rotating around the z-axis
with the same angular velocity. That is, Fig. 1 basically stays the same.

d) Determine the vector potential ~A(~r) for the case of said rotating ball. You can
use the result obtained in b) and replace R ! r0, � ! ⇢dr0, with ⇢ the charge
density of the ball. If you then integrate over r0, you will get the desired result.
Explain why! Hint: Take care when using the result of b). For the inner of

the ball, two different contributions have to be taken in account.

e) Obtain the magnetic field ~B(~r) inside and outside of the ball. Analogously
to before, write the field outside of the sphere as a magnetic dipole field and
determine the corresponding magnetic dipole moment ~m.

2 Suggested Solution

Throughout the whole problem, we will work in spherical coordinates,

~r(r, ✓,�) =

0

BBB@

r sin(✓) cos(�)

r sin(✓) sin(�)

r cos(✓)

1

CCCA
, (1)

where we will omit the arguments of ~r. We follow the usual convention that r = |~r|.
We start by collecting the formulae we will need to solve this exercise. They can

be found in [2, 3] or any other textbook on classical electrodynamics. The magnetic
moment ~m of a circular conducting ring in the x-y-plane with radius R is given by

~m = I⇡R2êz, (2)

where I is the current flowing through the ring.
In the static case (no time-dependence in the current density), the vector potential

~A(~r) of a configuration with current density ~j(~x) can be calculated using the formula

~A(~r) =
µ0

4⇡

Z

R3

d3r0
~j(~r 0)

|~r � ~r 0| . (3)

The current density of a charge density ⇢ moving with velocity ~v is given by

~j(~r) = ⇢~v. (4)
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In the context of potentials and Green’s functions, one can derive (also derived in
one of our other exercises)

Z

R3

d3r 0 ⇢(~r 0)

|~r � ~r 0| =
1X

l=0

4⇡

2l + 1

lX

m=�l

Ylm(✓,�)

Z 1

0

dr0 r02
rl<

r>l+1

Z

S2

d⌦0Y ⇤
lm(✓

0,�0)⇢(~r 0),

(5)
with r< = min(|~r|, |~r 0|), r> = max(|~r|, |~r 0|), the spherical harmonics Ylm(✓,�) and
the 2-sphere S2.

Given a vector potential ~A(~r), the magnetic field ~B(~r) is given by the curl of the
vector potential, that is

~B(~r) = r⇥ ~A(~r). (6)

While in cartesian coordinates, the curl takes a conceivably simple form, in spherical
coordinates it is given by

r⇥ ~A(~r) = êr
1

r sin(✓)


@

@✓
(sin(✓)A�(~r))�

@A✓(~r)

@�

�

+ ê✓


1

r sin(✓)

@Ar(~r)

@�
� 1

r

@

@r
(rA�(~r))

�
+ ê�

1

r


@

@r
(rA✓(~r))�

@Ar(~r)

@✓

�
. (7)

Note how the derivatives do not act on the basis vectors. The magnetic field gener-
ated by a magnetic dipole moment ~m is given by

~B(~r) =
µ0

4⇡

3êr(~m · êr)� ~m

r3
. (8)

2.1 a) Magnetic Dipole Moment

As explained in the problem, we break the sphere up in circular rings and calculate
their magnetic moment to later integrate over the angle ✓ and find the magnetic
moment of the full sphere. Using Eq. (2), we find for the magnetic moment ~m(✓)

of the ring in ✓-direction
~m(✓) = r2(✓)⇡I(✓)êz. (9)

The radius of the ring and the current obviously depend on the angle (see Fig. 1).
The current emerges from the charge on the sphere rotating around the z-axis. The
angular velocity is connected to the time T necessary for one revolution (period) via
! = 2⇡

T . One can then deduce

I(✓) =
Q(✓)

T
= �A(✓)

!

2⇡
, (10)
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where A(✓) = 2⇡R2 sin(✓) is the surface area of the ring in ✓-direction. This can be
deduced when considering the integral over the sphere with radius R

A =

Z

SR

dA =

Z ⇡

0

d✓

Z 2⇡

0

d� R2 sin(✓)| {z }
Jacobian

= 2⇡

Z ⇡

0

d✓R2 sin(✓), (11)

such that dARing(✓) = 2⇡R2 sin(✓)d✓ and thus A(✓) = 2⇡R2 sin(✓) for a fixed angle
✓ as claimed above. Inserting r(✓) = R sin(✓) and Eq. (10) into Eq. (9), we find

~m(✓) = R2 sin2(✓)⇡�A(✓)
~!

2⇡
=

2⇡R4 sin3(✓)�~!

2
. (12)

Integrating this over ✓, we find the magnetic moment of the sphere to be given by

~m =

Z ⇡

0

d✓ ~m(✓) = ⇡R4�~!

Z ⇡

0

d✓ sin3(✓)
| {z }

4/3

=
4

3
⇡R3

| {z }
VBall

(R�~!). (13)

2.2 b) Vector Potential

To calculate the vector potential, we will use Eq. (3). For the current density of
our problem, we use Eq. (4), yielding

~j(~r) = ��(r �R)~v(~r) = ��(r �R)(~! ⇥ ~r) = ��(r �R)R! sin(✓)

0

BBB@

� sin(�)

cos(�)

0

1

CCCA

| {z }
ê�

(14)

because the charge density becomes a surface charge density and the delta distri-
bution ensures that there only is a contribution on the sphere. Here, we introduced
r = |~r| as mentioned below Eq. (1) and inserted ~r in spherical coordinates, Eq. (1).
Inserting this into the vector potential Eq. (3) and using Eq. (5) (replacing ⇢(~r 0)

with ~j(~r 0)), we find

~A(~r) =
µ0

4⇡

Z

R3

d3r0
��(r 0 �R)R! sin(✓0)ê�0

|~r � ~r 0|

=
µ0�R3!

4⇡

rl<
r>l+1

1X

l=0

4⇡

2l + 1

lX

m=�l

Ylm(✓,�)

Z 1

�1

d cos ✓0
Z 2⇡

0

d�0Y ⇤
lm(✓

0,�0) sin(✓0)ê�0

| {z }
(⇤)

(15)
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where because of the delta distribution, the r0-integration evaluates the integrand at
r0 = R and we have r< = min(|~r|,R), r> = max(|~r|,R). We now rewrite sin(✓0)ê�0

in terms of spherical harmonics, according to

sin(✓0)ê�0 = sin(✓0)

0

BBB@

� sin(�0)

cos(�0)

0

1

CCCA
= sin(✓0)

0

BBB@

1
2i(e

i�0 � e�i�0
)

1
2(e

i�0
+ e�i�0

)

0

1

CCCA

=

r
8⇡

3

0

BBB@

1
2i [Y11(✓0,�0) + Y1�1(✓0,�0)]

�1
2 [Y11(✓0,�0)� Y1�1(✓0,�0)]

0

1

CCCA
, (16)

such that the (⇤) equation from above becomes

Z 1

�1

d cos ✓0
Z 2⇡

0

d�0 Y ⇤
lm(✓

0,�0) sin(✓0)ê�0

=

r
8⇡

3

Z 1

�1

d cos ✓0
Z 2⇡

0

d�0 Y ⇤
lm(✓

0,�0)

0

BBB@

1
2i [Y11(✓0,�0) + Y1�1(✓0,�0)]

�1
2 [Y11(✓0,�0)� Y1�1(✓0,�0)]

0

1

CCCA

=

r
8⇡

3
�l1

0

BBB@

1
2i (�m1 + �m�1)

�1
2 (�m1 � �m�1)

0

1

CCCA
. (17)

Inserting this back into Eq. (15), we find the vector potential to be given by

~A(~r) =
µ0�R3!

3

r<
r>2

r
8⇡

3

0

BBB@

1
2i [Y11(✓,�) + Y1�1(✓,�)]

�1
2 [Y11(✓,�)� Y1�1(✓,�)]

0

1

CCCA

| {z }
sin(✓)ê� (see Eq. (16))

=

8
<

:

µ0�!
3 rR sin(✓)ê� for r  R,

µ0�!
3

R4

r2 sin(✓)ê� for r � R,
(18)

for the two cases inside and outside of the sphere.
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2.3 c) Magnetic Field

For the magnetic field, we now use the solutions we found for the vector potential
and insert them into Eq. (6) under the use of Eq. (7). The solution inside of the
sphere was found to be ~Ain(~r) =

µ0�!
3 rR sin(✓)ê� – which only has a �-component –

such that we find

~Bin(~r) = êr
1

r sin(✓)
@✓

⇣µ0�!

3
rR sin2(✓)

⌘
� ê✓

1

r

@

@r

⇣µ0�!

3
r2R sin(✓)

⌘

=
2

3
µ0�!R (cos(✓)êr � sin(✓)ê✓)| {z }

êz

. (19)

For the solution outside of the sphere, we found ~Aout(~r) = µ0�!
3

R4

r2 sin(✓)ê�. The
magnetic field is then found to be

~Bout(~r) = êr
1

r sin(✓)
@✓

✓
µ0�!

3

R4

r2
sin2(✓)

◆
� ê✓

1

r

@

@r

✓
µ0�!

3

R4

r
sin(✓)

◆

=
µ0�!

3

R4

r3
(2 cos(✓)êr + sin(✓)ê✓) . (20)

To find the magnetic dipole moment and bring this magnetic field into the form Eq.
(8), we note that

êr(êr · ~!) = êr (! cos(✓)) () cos(✓)êr =
êr · ~!
!

êr (21)

as well as

sin(✓)ê✓ = sin(✓)

0

BBB@

cos(✓) cos(�)

cos(✓) sin(�)

� sin(✓)

1

CCCA
= cos(✓)

0

BBB@

sin(✓) cos(�)

sin(✓) sin(�)

cos(✓)

1

CCCA
�

0

BBB@

0

0

1

1

CCCA

= cos(✓)êr � êz. (22)

Inserting this back into Eq. (28), we find

~Bout(~r) =
µ0�!

3

R4

r3

✓
3
êr · ~!
!

êr � êz

◆
=

µ0�

3
R43 (êr · ~!) êr � ~!

r3
(23)

and a comparison with Eq. (8) gives – in accordance with Eq. (13) from a) – that

~m =
4⇡

3
R3 (R�~!) . (24)

8



2.4 d) Vector Potential

Replacing the sphere by a ball, the radius R has to be replaced by r0 because the
current density does not contain a delta distribution which sets r0 = R anymore.
Furthermore, the surface charge density � becomes a charge density ⇢ and we have
to integrate the resulting equations over the radius r0, because we can think of the
ball as an infinite amount of spheres reaching from the origin to the radius R of the
ball. That is why we now replace R ! r0, � ! ⇢ plus an integration dr0.

For the charge density, we obtain ⇢ = Q
V = 3Q

4⇡R3 . In order to find the vector po-
tential of the ball (inside and outside), we can use the result for the sphere obtained
in b) and integrate it over r0. Care has to be taken for the solution inside of the ball
– if you want to find the vector potential at a point ~r, that is ~A(~r), bear in mind
that when integrating over the spheres with radius |~r 0| = r0, the vector ~r will lie
outside of these spheres as long as the integration variable is smaller than |~r| = r.
In this region, the outside solution has to be used, while for the integration region
where r0 > r, the inside solution is the correct choice. For inside of the ball, we thus
find

~Ain(~r) =
µ0⇢!

3

2

6664

Z r

0

dr0
r04

r2| {z }
r0r

+

Z R

r

dr0 rr0

| {z }
r0�r

3

7775
sin(✓)ê�

=
µ0Q!

8⇡

✓
r

R
� 3

5

r3

R3

◆
sin(✓)ê� (25)

after inserting the charge density. For the outside of the ball, we analogously find

~Aout(~r) =
µ0⇢!

3

Z R

0

dr0
r04

r2
sin(✓)ê�

=
µ0Q!

20⇡

R2

r2
sin(✓)ê�. (26)

2.5 e) Magnetic Field

For the magnetic field, we proceed as in c), that is use Eq. (6) with Eq. (7). The
solution inside of the ball was found to be ~Ain(~r) = µ0Q!

8⇡

⇣
r
R � 3

5
r3

R3

⌘
sin(✓)ê� and

9



we find

~Bin(~r) = êr
1

r sin(✓)

µ0Q!

8⇡

✓
r

R
� 3

5

r3

R3

◆
@✓

�
sin2(✓)

�

� ê✓
1

r
sin(✓)

µ0Q!

8⇡

@

@r

✓
r2

R
� 3

5

r4

R3

◆

=
µ0Q!

4⇡

✓
1

R
� 3

5

r2

R3

◆
(cos(✓)êr � sin(✓)ê✓)| {z }

êz

+
µ0Q!

4⇡

3

5

r2

R3
sin(✓)ê✓. (27)

For the solution outside of the sphere, we found ~Aout(~r) = µ0Q!
20⇡

R2

r2 sin(✓)ê�. The
magnetic field is then found to be

~Bout(~r) = êr
1

r sin(✓)

µ0Q!

20⇡

R2

r2
@✓

�
sin2(✓)

�
� ê✓

1

r
sin(✓)

µ0Q!

20⇡

@

@r

✓
R2

r

◆

=
µ0Q!

20⇡

R2

r3
(2 cos(✓)êr + sin(✓)ê✓)

=
µ0Q!

20⇡

R2

r3

✓
3
êr · ~!
!

êr � êz

◆

=
µ0QR2

20⇡

3 (êr · ~!) êr � ~!

r3
, (28)

where we used the same trick as in c) for the last steps. A comparison with Eq. (8)
then gives

~m =
1

5
QR2~! (29)

for the magnetic dipole moment. This also could have been calculated analogously
to a) under the given replacements (see the accordance we found in Eq. (24)).
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