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Abstract

We give a summary of multi-dimensional integration. That is line integrals, sur-

face integrals, volume integrals and everything that is connected to these. We

also talk about Gauss’ theorem and Stokes’ theorem. The reader is expected

to already have some knowledge on integration. Even though we try to be as gen-

eral as necessary, we leave general cases like integration over abstract vector spaces

and other details to the Mathematicians. Instead, we stick to integration over Rn.

Because of the isomorphism R2 ⇠= C, portions of this review might be applicable

to an integration in the complex plane under (slight) modifications. We will not

further talk about this but it shall be noted that Cauchy’s integral theorem and

the residue theorem play a big role in complex analysis. At times, this summary

might lack mathematical rigor for the sake of understanding and intuition.

For people who are interested in a mathematical approach to this topic, I can re-

commend the books [1], [2] and [3], as well as the scripts [4], [5] and [6]. They cover

everything you need to know to kick o↵ your career in Analysis. Unfortunately, as

far as I know, they are only available in German. The Wikipedia pages [7], [8], [9]

and [10] also do a really good job on these topics and contain some useful graphics

and animations. They are available in German and English. This recap is basically

based on the given literature and things learned here and there.



1 Introduction

We want to give a recap of multi-dimensional integration to the extent necessary for

the daily life of a Physicist. We shall consider only such functions, that allow for

an integration (are (Riemann) integrable). That is functions, for which it makes

sense to define the (Riemann) integral and the integral exists (either in the proper

or improper sense). Usually, physicists deal with functions that are smooth, i.e.

that can be derived any number of times, with the derivatives being continuous. An

example of the class of functions we shall not consider is the Dirichlet function

D : R! R,

x 7! D(x) =

8
<

:
1, for x 2 Q

0, for x 2 R\Q,

which can be integrated using the Lebesgue integral, yielding

Z

R

dxD(x) = 0

because Q is a countable and thus null set.

1.1 Terminology

To standardize the terminology we use, we give an overview of the di↵erent terms

and notations that exist for the functions we will talk about.

For some function

f : V!W,

with V and W being vector spaces, we refer to V as the domain and to W as the

codomain. As mentioned in the abstract, we will restrict ourselves to the cases

where V = Rn and W = Rm for {n,m} 2 N.
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A scalar(-valued) function is a function that maps

f : R! R,

while a scalar field is a function

f : Rn
! R,

where often n  4 for physical applications.

A vector(-valued) function is a function that maps

f : R! Rm,

while a vector field is a function

f : Rn
! Rm,

where again, n  4 and m  4 for most of the physical applications. So in other

words: if we are talking about a field, we refer to the domain of the function being

multi-dimensional. The terms scalar(-valued) and vector(-valued) function refer to

the dimension of the codomain. If you are not going into the field of String Theory,

you will probably be left with at most four-dimensional vector spaces for the rest of

your studies. Even though this might be the correct way to refer to these types of

functions, you will often just read ‘function’ for any of them. While sometimes, we

might explicitly use the term ‘field’, this is also the convention we stick to.

There are two more abuses of notation we will commit, where in both cases, it

will be clear from context what is meant. Firstly, vectors will sometimes be written

with an arrow on top of them and sometimes not. Secondly, integrations over

some domain D often need a parametrization of that domain. A parametrization

is a function that parametrizes the domain using a set of parameters (who would

have thought). That is, a parametrization of D maps a set of parameters (s, t, . . .)

according to

(s, t, . . .) 7! D(s, t, . . .) = (x1(s, t, . . .), x2(s, t, . . .), . . .).

At least locally, a line can always be parametrized by one parameter, a surface

by two parameters, and so on. Globally, it might be di�cult to find one single

parametrization. The mentioned abuse is, that we label the function that gives said

parametrization with the same letter D(s, t, . . .) as we label the domain D with.
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2 What Types of Functions can be

Integrated?

First of all, note that there is always the possibility to integrate a function compon-

entwise. That is, for a function f0 : Rn
! Rm, we can integrate each component

of the vector f0(x1, . . . , xn) =

0

BBBBBB@

f 1
0 (x1, . . . , xn)

f 2
0 (x1, . . . , xn)

...

fm
0 (x1, . . . , xn)

1

CCCCCCA
to find I0 =

0

BBBBBB@

I10

I20
...

Im0

1

CCCCCCA
, which for

i 2 {1, . . . ,m} is given by the integrals

I i0 =

Z b1

a1

dx1

Z b2

a2

dx2 . . .

Z bn

an

dxn f
i
0(x1, . . . , xn)

over the domains [aj, bj] ✓ R, j 2 {1, . . . , n}. The resulting vector I0 has the same

dimension m as the codomain of f0(x1, . . . xn). This is a rather boring case and we

will focus on understanding other cases of possible integrations. More on this, on

the notation used, and a simpler notation will follow in the next chapters.

2.1 One-Dimensional Integration

We first consider the well-known integration of functions

f1 : R! R,

x 7! f1(x)

over a domain [a, b] ✓ R. Note, that the domain the function is defined on could

as well be restricted to a subset of R, as long as the integration domain does not

exceed the function’s domain. We then have

I1 =

Z b

a

dx f1(x).
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There is a variety of notations you may find here. While Physicists usually write

the measure dx right after the integral it belongs to, Mathematicians often write

the integral measure after the function that is to be integrated. Another thing you

might see is, that the domain is written under the integral as [a, b] instead of the

lower and upper boundaries being written below and above the integral sign. That

means an equivalent notation would be

I1 =

Z

[a,b]

f1(x) dx

or any mix of these conventions.

We know these one-dimensional integrations so well, that it might appear

clear to us what is meant, while an integral

I3 =

Z

C3

ds f3(~x)

with f3 : Rn
! R over some curve C3 parametrized by C3 : [a, b] ! Rn looks

forbidding. In the end, everything is just a matter of definition or what you want

to calculate. If you look back on your courses in mathematics, the one-dimensional

integration I1 yields the area a function f1(x) forms with the x-axis and is defined

as the limiting process of putting rectangles with width (x-direction) ✏ ! 0 under

the function to measure the area. See Fig. 2.1 for a graphical visualization of this.

We will come to the other cases, like e.g. I3, later.

Figure 2.1: The limiting process of calculating the area under the function f(x) =
p
x from 0 to 1 with rectangles. Image taken from [7].
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2.2 Multi-Dimensional Integration

The next step would be to extend the domain of the function to a higher-dimensional

vector space and keep the codomain’s dimension constant. We get

f2 : R2
! R

(x, y) 7! f2(x, y),

which can be integrated over a domain [a, b]⇥ [c, d] ✓ R⇥R. The integral can then

be referred to as a double integral and be written in the forms

I2 =

Z b

a

dx

Z d

c

dy f2(x, y) =

Z b

a

Z d

c

dx dy f2(x, y) =

Z

[a,b]⇥[c,d]

dx dy f2(x, y).

From now on, we usually write a vector for the function’s values ~x = (x, y), which can

then easily be extended to higher dimensions ~x = (x1, x2, . . .) and the dimension of

~x will be clear from context. We will not make a di↵erence between ~x = (x1, x2, . . .)

and ~x =

0

BBB@

x1

x2

...

1

CCCA
, while strictly speaking, they are not the same. A Physicist would

refer to the former one as a covariant and the latter one as a contravariant vector,

sticking to tensor terminology. Mathematicians would refer to the latter one as a

vector from some vector space V, while the former one then is a vector from the

dual space V⇤ of said vector space V. The elements from a dual space may also be

referred to as one-forms. Another notation that arises for I2 then reads

I2 =

Z

D2

dAf2(~x) =

Z

D2

d2x f2(~x) =

Z

D2

d~x f2(~x)

with D2 = [a, b] ⇥ [c, d], and dA = dx dy being an elementary infinitesimal piece

of area. Again, mixtures of these notations are possible. A simple example is the

integration of the constant function f2(~x) = 1, yielding I2 = (b� a)(d� c), the area

of the integration domain. A visualization of a more complicated function f(x, y) is

given in Fig. 2.2.
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Figure 2.2: Some function z = f(x, y) in a three-dimensional plot. The integral I2
then yields the volume under the function f(x, y). For f(x, y) = 1, one
dimension is just the constant function, thus turning the volume into an
area in some sense, because V = A ⇥ 1 (1 in the z-direction). Image
taken from [7].

2.3 Line Integrals

The next interesting thing to look at is the integration of a function over some

line, resulting in a line integral. Going back to the one-dimensional case I1, we

integrated the function y = f1(x) over the x-axis. This is the easiest case: the

domain of integration just lies along the x-axis and the function itself only takes

scalar values. But it is also possible, that the domain of integration is some line in

Rn and we want to integrate a function that takes on values in Rn.

2.3.1 Line Integral of a Scalar Field

Let us first consider the case where we have a scalar field

f3 : R
n
! R

and a curve C3, parametrized by

C3 : [a, b] ! Rn.

The integration process of a function f along some curve C is shown and explained

in Fig. 2.3 for the special case of n = 2. For the integral of the function f3 along

the curve C3, we generally define

I3 =

Z

C3

ds f3(~x) =

Z b

a

dt f3(C3(t))kĊ3(t)k,
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Figure 2.3: The integration of a scalar field f along some curve C. The first image
shows the contour plot of a function f(x, y), the second image displays
the integration curve C in blue color. On the third image, the contour
plot turns into a three-dimensional plot, showing f(x, y) on the z-axis.
On the fourth image, the integration curve is projected onto the x-y-
plane in red color. The fifth and sixth images show how the curve and its
projection can be stretched to turn it into a one-dimensional integration.
Images taken from the animation in [8].

with ds = kĊ3(t)k dt being an elementary infinitesimal piece of the curve. Further-

more, C3(t) is the parametrization of the curve C3 with curve parameter t 2 [a, b],

and

kĊ3(t)k =
q
(Ċ3(t)1)2 + (Ċ3(t)2)2 + . . .

the euclidean norm. What this means is, that we integrate the function’s values

along the curve and weight these with the arc length kĊ3(t)k dt at every point. An

application of this would for example be the calculation of some quantity for a given

density function of that quantity on the curve. To fully understand the appearance

of the arc length, it might be useful to look into your favorite Analysis II literature

for a motivation of this definition. Yet, it again turns out to be insightful to consider

the case f3(~x) = 1. In two dimensions, we then find

I3 =

Z

C3

ds =

Z b

a

dt kĊ3(t)k,

9



which turns the integral into the length of the curve. This can easily be checked and

for the special case of a unit circle centered at (x0, y0) with the parametrization

C3 : [0, 2⇡] ! S
1

t 7! C3(t) = (x0 + cos t, y0 + sin t)

yields exactly what we expect, namely

I3 =

Z 2⇡

0

dt k(� sin t)2 + (cos t)2k =

Z 2⇡

0

dt = 2⇡.

2.3.2 Line Integral of a Vector Field

In a next step, we want to extend the concept of line integrals to vector fields of the

form

f4 : R
n
! Rn

and curves C4, parametrized by

C4 : [a, b] ! Rn.

It is important here, that the dimensions of the two codomains coincide. This

becomes clear when looking at the definition of the integral of said vector field f4

along the curve C4, given by

I4 =

Z

C4

d~x · f4(~x) =

Z b

a

dt f4(C4(t)) · Ċ4(t).

Here, d~x is a vector tangential to the curve with magnitude of the infinitesimal

piece kC4(t)k dt as before and ‘·’ denotes the canonical scalar product on Rn. The

scalar product of course requires two vectors from the same vector space. But it is

also pretty descriptive if one for example regards f4 as a force and C4 as the curve

along which the force acts. Because of the formula for work �W = �F �l with �F

being the force and �l the length along which it acts, I4 represents the integration

of the infinitesimal version of this formula. Of course, this makes only sense if the

force acts in the same vector space as the way along which it acts. The integration

procedure is depicted in Fig. 2.4.
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Figure 2.4: The integration of a vector field F along some curve C. The images are
self-explanatory. Images taken from the animation in [8].

2.4 Surface Integrals

Similarly to the motivation we gave for the line integrals, one can motivate surface

integrals. The multi-dimensional integration I2 can be extended to further cases.

One is, where the domain of integration is not simply given by the cartesian product

D2 = [a, b]⇥ [c, d], but rather a more complex 2-dimensional surface embedded in n-

dimensional space (a manifold). The other is that additionally, the function itself

might take values in Rn. Even though we first define (two-dimensional) surface

integrals for general n-dimensional spaces, we then turn to the case of n = 3 to find

a motivation for the formula. Note further, that a hypersurface is not the same

as a surface here. A hypersurface generalizes the concept of a surface to a (n� 1)-

dimensional manifold embedded in n-dimensional space. For n = 3, the concepts

of surface and hypersurface coincide. In principle, it is more natural to talk about

hypersurfaces than two-dimensional manifolds embedded in n-dimensional space.

Just as it makes more sense to talk about a volume in n-dimensional space being an

n-dimensional object itself, rather than a three-dimensional manifold embedded in

n-dimensional space. If you want to learn more on the integration over hypersurfaces,

you can for example take a look at [11].
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2.4.1 Surface Integral of a Scalar Field

As before, we first consider the case of a scalar field

f5 : R
n
! R

and a surface A5, parametrized by

A5 : [a, b]⇥ [c, d] ! Rn.

What we want to calculate is the integral of the function f5 over the surface A5,

weighted with the infinitesimal surface element dS at every point. In Fig. 2.5, a

depiction of this surface element dS can be found. Applications of this formula

again include the calculation of some quantity with a given density function of that

quantity on the surface. We define the integral of f5 over the surface A5 to be

Figure 2.5: An infinitesimal small surface element (scaled up to a larger size) of a
surface S for the case n = 3. Image taken from [9].

I5 =

Z

A5

dSf5(~x) =

Z b

a

dt

Z d

c

ds f5(A5(t, s))
p

|det(�(t, s))|,

where

�(t, s) =

0

@
@A5(t,s)

@t ·
@A5(t,s)

@t
@A5(t,s)

@t ·
@A5(t,s)

@s

@A5(t,s)
@s ·

@A5(t,s)
@t

@A5(t,s)
@s ·

@A5(t,s)
@s

1

A

and
p

det(�(t, s)) dt ds is the area of the surface element dS mentioned above. To

understand this is beyond the scope of this recap and requires some knowledge on

di↵erential geometry. Working with the terminology of di↵erential geometry,

�(t, s) can be referred to as the first fundamental form of the parametrization

for the surface in n = 3. What we will do, is look at this special case n = 3. Here,
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one easily calculates

det(�(t, s)) =

�����
@A5(t, s)

@t

�����

2�����
@A5(t, s)

@s

�����

2

�

 
@A5(t, s)

@t
·
@A5(t, s)

@s

!2

,

which, for the trained eye, obviously coincides with the square of the cross product’s

absolute value in three dimensions. To see this, we use

✏kij✏kmn = �im�jn � �in�jm

(sum convention), and find

ka⇥ bk2 = ✏kijaibj✏kmnambn = (�im�jn � �in�jm)aibjambn

= kak2kbk2 � (a · b)2.

Our integral can then be written as

I5 =

Z

A5

dSf5(~x) =

Z b

a

dt

Z d

c

ds f5(A5(t, s))

�����
@A5(t, s)

@t
⇥

@A5(t, s)

@s

�����,

where the area of the surface element dS is now given by
���@A5(t,s)

@t ⇥
@A5(t,s)

@s

��� dt ds.
This is exactly the infinitesimal form of the well-known formula to calculate the area

spanned by two vectors a and b in three dimensions:

ka⇥ bk = kakkbk sin (^(a, b)).

As an example, we want to consider the integration of f5(~x) = 1 over the unit sphere

S
2, centered at (0, 0, 0). In spherical coordinates, this is given by the parametrization

A5 : [0, ⇡]⇥ [0, 2⇡] ! S
2

(✓,�) 7! A5(✓,�) = (sin ✓ cos�, sin ✓ sin�, cos ✓).

For the integral, we then find

I5 =

Z

A5

dS =

Z ⇡

0

d✓

Z 2⇡

0

d�
��� sin ✓(sin ✓ cos�, sin ✓ sin�, cos ✓)

���

=

Z ⇡

0

d✓

Z 2⇡

0

d� sin ✓ = 4⇡,

as expected.
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2.4.2 Surface Integral of a Vector Field

Having motivated the formula for the integration of a scalar field over a surface, we

now come to the integration of a vector field

f6 : R
n
! R3

over a surface A6, parametrized by

A6 : [a, b]⇥ [c, d] ! Rn.

Note how we restricted the codomain to a three-dimensional space. It is otherwise

far from clear what is meant by this type of integration, because we would have to

find an n-dimensional unit vector, normal to a two-dimensional surface. We usually

have n = 3, and from a physical point of view, this integration represents the flux

of the vector field through the area of the surface, as shown in Fig. 2.6. We define

Figure 2.6: The vector field F , depicted in red color, flowing through the surface
area. The blue vector field n represents the unit normal vectors on the
surface. In the right image, it can be seen, how the actual flux through
the surface is calculated by projecting the vector field at each point on
the surface onto the unit vector thats normal to the surface at each point.
Images taken from [9].

I6 =

Z

A6

dS · f6(~x),

with dS being a three-dimensional vector, normal to the surface at every point with

the surface element’s magnitude. This can then be rewritten as

I6 =

Z

A6

dS n(~x) · f6(~x) =

Z b

a

dt

Z d

c

ds n(A6(t, s)) · f6(A6(t, s))
p

det(�(t, s)),

where now, the scalar quantity dS =
p

det(�(t, s)) dt ds is the area of the surface

element like in the scalar case and n(A6(t, s)) represents a unit vector normal to the

surface at every point. This is also where it gets problematic for the n-dimensional
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case. Yet, for the three-dimensional case n = 3, this simplifies to

I6 =

Z

A6

dS n(A6(t, s)) · f6(~x)

=

Z b

a

dt

Z d

c

ds

 
@A6(t,s)

@t ⇥
@A6(t,s)

@s

!

�����
@A6(t,s)

@t ⇥
@A6(t,s)

@s

�����

· f6(A6(t, s))

�����
@A6(t, s)

@t
⇥

@A6(t, s)

@s

�����

=

Z b

a

dt

Z d

c

ds

 
@A6(t, s)

@t
⇥

@A6(t, s)

@s

!
· f6(A6(t, s)),

because

n(A6(t, s)) =

 
@A6(t,s)

@t ⇥
@A6(t,s)

@s

!

�����
@A6(t,s)

@t ⇥
@A6(t,s)

@s

�����

is an appropriate unit vector, normal to the surface.

For the concept of a hypersurface (reminder: (n � 1)-dimensional manifold em-

bedded in n-dimensional space) on the other hand, the unit normal vector at every

point is uniquely defined. The domain and codomain of the vector field that is to be

integrated need to have the same dimension then, with the manifold being embedded

in these and having one dimension less. We will not further talk about this here, but

we want to mention, that the first fundamental form �(t, s) from above can easily

be extended to higher-dimensional parametrizations H(t1, t2, . . .) of a hypersurface

H, following

⌃(t1, t2, . . .) =

0

BBB@

@H(t1,t2,...)
@t1

·
@H(t1,t2,...)

@t1

@H(t1,t2,...)
@t1

·
@H(t1,t2,...)

@t2
· · ·

@H(t1,t2,...)
@t2

·
@H(t1,t2,...)

@t1

@H(t1,t2,...)
@t2

·
@H(t1,t2,...)

@t2
· · ·

...
...

. . .

1

CCCA
.

This also explains, how one can integrate a scalar field over a hypersurface. Namely

by modifying I5 accordingly, i.e. adding the additional integrations and replacing

A5(t, s) by the parametrization of the hypersurface H(t1, t2, . . .), as well as �(t, s)

by ⌃(t1, t2, . . .).
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2.5 Volume Integrals

As a last type of integral, we consider volume integrals. We noticed earlier, that

an integration over a hypersurface is more natural than an integration over a two-

dimensional surface embedded in n-dimensional space. That’s why now, we restrict

ourselves to the case, where the domain of our function has the same dimension as the

volume we integrate over. Similar to line integrals and surface integrals, the volume

integrals represent a generalization of multi-dimensional integrals. Considering I2,

we could add a third integration variable, turning it into a triple integral. The

domain of integration for the volume integrals can now be some volume in space,

instead of segments along the di↵erent axes.

It then only makes sense, to consider the integration of a scalar field, because we

can’t find a unit vector thats normal to this volume in the considered dimension.

We consider the function

f7 : R
3
! R

and a volume V7, parametrized by

V7 : [a, b]⇥ [c, d]⇥ [e, f ] ! R3.

As mentioned earlier, the three-dimensional volume we integrate over is embedded

in three-dimensional space now. We want to calculate the integral of the function

f7 over the volume V7, weighted with an infinitesimal volume element dV at every

point. This can for example be applied to find some quantity (like the mass) for a

given density function in this volume. We define the integral of f7 over the volume

V7 to be given by

I7 =

Z

V7

dV f7(~x) =

Z b

a

dt

Z d

c

ds

Z f

e

dr f7(V7(t, s, r))|det(DV7(t, s, r))|,

where det(DV7(t, s, r)) is the determinant of the Jacobian matrix

(DV7(t, s, r))i{t,s,r} =
@V7 i

@{t, s, r}
.

You might be familiar with this under the name transformation theorem from
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your courses in Analysis. Note that from the determinant’s definition, we find

(a⇥ b) · c = ✏ijkaibjck = det

0

BBB@

a1 b1 c1

a2 b2 c2

a3 b3 c3

1

CCCA
,

whereby the absolute value of this triple product |(a ⇥ b) · c| is known to give the

size of the volume spanned by a, b, c. One then finds

|det(DV7(t, s, r))| =
���
⇣@V7

@t
⇥

@V7

@s

⌘
·
@V7

@r

���,

explaining why |det(DV7(t, s, r))| can be thought of as the size of the infinitesimal

volume element dV .

This can be extended to volumes of higher-dimensional space by considering the

parametrization of the volume G, given by G(t1, t2, . . .). The Jacobian matrix then

reads

(DG(t1, t2, . . .))ij =
@Gi

@tj
.

The integration over a three-dimensional ‘volume’ in a four-dimensional space on the

other hand, can be done using the integration over a hypersurface. This is, because

the ‘volume’ has one dimension less than the space it is embedded in.
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3 Gauss’ Theorem and Stokes’

Theorem

The famous and very useful theorems by Gauss and Stokes connect volume integ-

rals over a scalar field with surface integrals over a vector field, and surface integrals

over a vector field with line integrals over a vector field respectively.

3.1 Gauss’ Theorem

Gauss’ theorem states, that for a vector field

f8 : R
n
! Rn

and a volume V8 in the same space, we have

I8 =

Z

V8

dV r · f8(~x) =

Z

@V8

dS n(~x) · f8(~x),

where (r· ) is the divergence operator and @V8 the boundary of the volume, a (n�

1)-dimensional manifold. Here, the volume V8 needs to be compact, which according

to Heine and Borel is equivalent to being closed and bounded if we consider Rn.

Furthermore, the function f8(~x) has to be continuously di↵erentiable. This becomes

really important if one works with a function like f8(~x) = 1p
x2
1+...+x2

n

, exhibiting

a singularity at the origin. It is not continuously di↵erentiable in a neighborhood

of the origin and choosing a compact volume around the origin, Gauss’ theorem

can thus not be applied. If you exclude the origin as a single point on the other

hand, the function will be continuously di↵erentiable but the volume is not compact

anymore. We will usually consider the case of a three-dimensional vector field in

three-dimensional space, i.e. n = 3. Then, in cartesian coordinates, the operator

r = ( @
@x1

, @
@x2

, . . .) is given by r = ( @
@x1

, @
@x2

, @
@x3

). Thinking of a vector field’s

divergence as a measure for the sources of field lines minus the sinks, you see a

graphical representation of Gauss’ theorem in Fig. 3.1.
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3.2 Stokes’ Theorem

As the general form of Stokes’ theorem in n dimensions dives too much into

di↵erential geometry and di↵erential forms, we only look at the case of a vector field

f9 : R
3
! R3

and a two-dimensional area A9 that can be parametrized by two parameters. Here,

A9 lies in an open subset of R3 and has to be bounded by a curve @A9. Furthermore,

the parametrization has to be a di↵eomorphism with a tangent space at each point

and the function f9(~x) has to be continuously di↵erentiable. Descriptively speaking,

the area can not be closed (like a sphere would for example be), because one has to

integrate over the boundary of this area. In some sense it means that the area can

not be a surface of some volume. Stokes’ theorem then states that

I9 =

Z

A9

dS · (r⇥ f9(~x)) =

Z

@A9

d~x · f9(~x),

where (r⇥ ) is also referred to as the curl of a vector field. An illustration is

given in Fig. 3.2.
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Figure 3.1: A graphical representation of a vector field flowing through the surface
of a sphere. Gauss’ theorem relates this flow with the field lines that
emerge and dissolve in the inner of the sphere, i.e. the volume. Image
taken from [12].

Figure 3.2: In the left image, you see the boundary of a surface area ⌃, denoted as
@⌃, and in the right image a rotating vector field. Stokes’ theorem
relates the integration of the curl of a vector field along an area with the
line integral of the vector field along the boundary of that area. Images
taken from [13] and [14].
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4 Summary

We tried to motivate the existing formulae to calculate the integrals of certain types

of function over di↵erent domains. If a motivation would have gone beyond the scope

of this summary, we at least gave the formula to calculate the integrals. We covered

line integrals, surface integrals and volume integral, as well as Gauss’ theorem

and Stokes’ theorem. If you want to learn more on (curved) surfaces and some

concepts of di↵erential geometry, you can take courses on General Relativity and

String Theory.
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