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Exercises in Quantum Field Theory, ST 2021

Marvin Zanke

Additional Exercises

H.X: The Gamma Function
In this exercise, we are going to investigate the Gamma function and its properties. The Gamma
function is an indispensable tool for the method of dimensional regularization, which has been
introduced in the lecture and will be studied more accessibly in the subsequent exercise.
The Gamma function can be defined via

Γ(s) :=

∫ ∞

0

dx xs−1e−x, (1)

which is valid for s ∈ C with Re(s) > 0.

(a) Show that Γ(s+ 1) = sΓ(s).

(b) Show that Γ(s+ 1) = s! for positive integers s ≥ 0.

Hint: use the concept of mathematical induction.

(c) Show that Γ(1/2) =
√
π.

Hint: the value of the Gaussian integral
∫∞
−∞ dx e−x2

=
√
π might be useful.

(d) Let α ∈ C, Re(α) > 0. Show that

α−sΓ(s) =

∫ ∞

0

dx xs−1e−αx. (2)

Hint: Prove the identity for α ∈ R, α > 0, and then make use of the identity theorem to
analytically continue the obtained equation.

The Gamma function as we defined it in this exercise can be analytically continued to the
whole complex plane except for non-positive integers s = −n ∈ {0,−1,−2, . . .}, where
it (indeed) possesses poles. This analytic continuation can be performed by using the
identity derived in part (a),

Γ(s) =
Γ(s+ 1)

s
, (3)

which yields an extension to the domain Re(s) < 0, except for the mentioned poles.
More specifically, one can use Eq. (3) one by one, first extending the domain into the
half-plane Re(s) > −1 by setting Γ−1<Re(s)<0(s) = Γ(s + 1)/s, then Γ−2<Re(s)<−1(s) =
Γ(s+ 2)/[s(s+ 1)], and so on.

(e) Calculate the value of Γ(−5/2) using the analytic continuation defined via Eq. (3). Gen-
eralize this result to Γ(−n/2) for n ∈ {1, 3, 5, . . .}.
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In the following, we are going to investigate the aforementioned pole structure of the
Gamma function a little further. To this end, we define the so-called Digamma function
as the logarithmic derivative of the Gamma function, i.e.

ψ(s) =
d

ds
log Γ(s) =

Γ′(s)

Γ(s)
. (4)

(f) Differentiate the identity derived in part (a) with respect to s to show that

ψ(s+ 1) =
1

s
+ ψ(s). (5)

Restricting Eq. (5) to positive integer values s = n ∈ {0, 1, 2, . . .} yields the special case

ψ(n+ 1) =
1

n
+ ψ(n) =

1

n
+

1

n− 1
+ . . .+ ψ(1) = −γE +

n∑
k=1

1

k
, (6)

where γE is the so-called Euler-Mascheroni constant, defined as γE = −ψ(1). In
order to determine the numerical value of γE, we now consider Stirling’s formula for
the Gamma function,

ln Γ(s) =

(
s− 1

2

)
ln(s)− s+

ln(2π)

2
+

∫ ∞

0

dx
2 arctan(x/s)

e2πx − 1
, (7)

which is valid for Re(s) > 0.1 An asymptotic expansion of this formula, valid for suffi-
ciently large s ∈ R, is given by

ln Γ(s) =

(
s− 1

2

)
ln(s)− s+

ln(2π)

2
+O

(
1

s

)
. (8)

(g) Show that

γE = lim
n→∞

(
n∑

k=1

1

k
− ln(n)

)
(9)

and convince yourself that γE = 0.5772 . . . by using a computer algebra system with n
sufficiently large, e.g. n = 100 000.2

Hint: consider the asymptotic behavior of Eq. (6) for n→ ∞.

We are now in a position to investigate the poles of the Gamma function. For this purpose,
we let ϵ be a small real parameter, in particular ϵ→ 0, and expand

Γ(1 + ϵ) = Γ(1) + ϵΓ′(1) +O(ϵ2) = 1 + ϵΓ(1)ψ(1) +O(ϵ2) = 1− ϵγE +O(ϵ2), (10)

so that using Eq. (3), we find Γ(ϵ) = Γ(1 + ϵ)/ϵ and thus

Γ(ϵ) =
1

ϵ
− γE +O(ϵ). (11)

1See, e.g., https://en.wikipedia.org/wiki/Stirling%27s_approximation for more information.
2Interestingly enough, it is—to the present day—not known whether γE is an algebraic or transcendental

number. In fact, it is not even known whether it is rational or irrational, see, e.g., https://en.wikipedia.
org/wiki/Euler%27s_constant.

https://en.wikipedia.org/wiki/Stirling%27s_approximation
https://en.wikipedia.org/wiki/Euler%27s_constant
https://en.wikipedia.org/wiki/Euler%27s_constant
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(h) Show that for n > 0, one has

Γ(−n+ ϵ) =
(−1)n

n!

[
1

ϵ
+ ψ(n+ 1) +O(ϵ)

]
=

(−1)n

n!

[
1

ϵ
− γE + 1 + . . .+

1

n
+O(ϵ)

]
.

(12)


