I just uploaded an article that I recently wrote, dealing with a semi-rigorous proof of the solution of Gaussian integrals in the complex, i.e.

\[ \int_{-\infty}^{\infty}{\mathrm{d}x \, \mathrm{e}^{-a x^2 + bx} = \mathrm{e}^{b^2/(4a)} \sqrt{\frac{\pi}{a}}}, \quad a, b \in \mathbb{C}, \quad \text{Re}(a) \geq 0,\]

where \(\text{Re}(a) = 0 \implies \text{Im}(a) \neq 0 \, \wedge \, \text{Re}(b) = 0\).

You can find it under the menu item “Teaching“.

See you there!

5 1 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
most voted
newest oldest
Inline Feedbacks
View all comments